
															OPTICS	
	
Bold	assumptions,	big	results	

An	exercise	in		starting	with	a	few	simple	assumptions	to	see	how	far	we	can	get	just	by	
thinking	and	not	getting	lost	with	fancy	mathematics.	
	

Introduction	
	

A	little	bit	about	where	I’m	coming	from.	I	spent	about	twenty	some	years	in	academia	at	
the	University	of	California	Santa	Barbara.		In	the	late	60s	my	teaching	was	to	sophomore	
engineers	and	then	in	the	70’s	I	started	a	master’s	degree	program	in	scientific	
instrumentation	in	the	physics	department.		That	program	started	out	in	the	standard	away	
of	doing	fixed	labs	and	lectures	with	homework.		But	it	then	evolved,	quite	by	accident,	into	
a	project-oriented	course	where	the	students	would	invent	and	build	instrumentation	for	
researchers	on	campus,	in	all	academic	departments	and	sometimes	with	companies	off	
campus.	It	became	very	clear	that	students	working	on	projects	where	they	had	to	think	
their	way	to	the	end,	and	which	there	could	be	many	solutions,	would	learn	a	lot	faster	than	
students	doing	labs	and	lectures	where	you	were	just	taking	instructions	and	trying	to	
remember	them,	something	many	people	call	“learning”.	No,	it	is	not	learning,	it	is	teaching.	
On	top	of	this	surprise	there	was	also	another	surprise.		We	started	accepting	students	into	
the	program	from	outside	engineering	and	physics,	for	instance	we	had	a	religious	studies	
major	and	a	biologist	(who	is	now	a	cardiologist)	in	the	program	and	found	that	as	far	as	
solving	problems	goes,	it	didn’t	seem	to	make	much	difference	what	their	undergraduate	
education	was,	as	long	as	they	were	smart	and	knew	some	math.		Project	oriented	
education	is	messy	though.	It	even	gets	hard	to	grade	people	who	are	not	doing	the	same	
thing	and	who	start	with	different	backgrounds.	How	do	you	give	a	test?	Anyway,	the	
lectures	went	away	and	it	became	completely	project	learning	where	all	the	thinking	and	
learning	was	done.	But	not	learning	about	facts,	learning	how	to	think	your	way	through	a	
problem	and	get	to	the	end	with	some	reasonable	outcome.		Learning	how	to	function.		I	
must	admit	that	as	part	of	my	history	I	went	to	a	vocational	high	school	in	Iowa	where	my	
major	was	machine	shop,	where	everything	was	learning	by	doing.	
I	quit	academia	and	started	a	company	that	made	scanning	probe	microscopes.	I	started	the	
company	with	the	best	student	that	I	had	in	all	the	years	of	the	scientific	instrumentation	
program	(Hey,	I	needed	lots	of	help).		From	my	experience	in	the	instrumentation	program,	
we	would	hire	employees	who	had	talent,	not	experience,	unless	they	came	in	the	same	
package.		It	was	fun	because	we	quickly	became	the	world’s	leader	in	our	field.			We	learned	
as	we	went	along.		I	spoke	with	a	friend	from	long	ago,	actually	a	high	school	friend,	so	it	
was	really	long	ago.	He	said	“wow	you	must	have	read	a	lot	about	how	to	do	business”.		
Then	I	realized	that	he	believes	that	everything	you	know	is	what	you	read	or	what	
someone	told	you,	whereas	what	I	believe	is	that	you	can	learn	more	by	doing	something	
than	by	reading	about	it.			
		After	I	had	been	out	of	academia	for	a	while	I	had	strange	idea	to	go	back	and	teach	a	
course	at	UC	Santa	Barbara	to	involve	thinking	rather	than	reading	and	memorizing.		This	
course	went	by	different	names,	Learning	by	thinking,	Thinking	out-of-the-box,	and	How	do	
things	work?		The	course	went	okay	for	a	few	years	then	slowly	went	downhill.		Two	things	



happened,	I	became	probably	more	senile	and	the	students	didn’t	seem	to	care	about	
thinking	but	only	about	getting	a	grade.			I	finally	gave	up,	believing	that	academia	was	
training	students	as	you	would	train	seals,	that	is,	here’s	a	trick,	repeat	the	treat,	here’s	
your	fish,	but	not	how	do	you	think	up	new	tricks?		Trained	seals	don’t	think	up	new	tricks.		
Part	of	my	“teaching”	was	to	pick	subjects	where	you	could	start	with	a	couple	of	simple	
assumptions	and	then	work	your	way	through	the	entire	(almost)	subject.		My	two	
favorites	were	optics	and	relativity.			I	thought	I	would	put	my	thinking	on	the	subjects	
down	in	writing.	People	who	want	to	do	it	more	formally	would	probably	think	this	is	
nonsense	but	some	people	may	enjoy	it	and	find	it	an	easy	way	to	learn	the	subject.		One	
thing	about	teaching	is	that	I	not	only	learned	a	lot	both	about	teaching,	but	also	about	the	
subject	matter,	even	more	when	I	went	to	put	it	down	on	paper.	
	
	 	 	 	 OPTICS	
	
The	assumptions:	
	
1.	Light	is	a	wave	(not	very	bold)	
2.	Light	can	take	any	and	all	paths	from	A	to	B.	
I	am	going	to	blame	this	second	assumption	on	Richard	Feynman,	which	is	where	I	think	I	
ran	across	it	(summing	over	paths).		Maybe,	though,	it	was	Huygens	several	centuries	ago.		
We	will	not	bother	with	the	fact	that	light	is	an	electromagnetic	wave	but	just	a	wave.	
When	I	studied	optics,	it	was	divided	into	two	sections,	geometrical	optics	(light	is	a	ray)	
and	physical	optics	(light	is	a	wave).	In	our	discussions,	light	is	a	wave.	
	
Now	people	usually	think	light	travels	in	a	straight	line	and	so	what	is	this	business	about	
taking	any	path?	But	light	is	a	wave	and,	as	you	know,	two	waves	out	of	phase	can	cancel	
each	other,	so	it	may	turn	out	that	a	lot	of	these	paths	cancel	each	other.	
		

	
																																				Constructive	interference	



	
																																									Destructive	interference	
	
	
	
	
	
Of	course	if	they	all	cancel	each	other,	then	no	light	goes	from	A	to	B.	If	we	take	the	long	
path	from	A	to	B,	there	is	always	a	shorter	path,	shorter	by	one	half	a	wavelength	that	
cancels	that	path	and	so	on	down	until	we	get	to	the	path	of	the	minimum	number	of	
wavelengths	from	A	to	B.		When	we	get	to	that	point,	the	paths	cease	to	cancel	each	other	
and	around	one	quarter	of	a	wavelength	of	the	path	of	minimum	wavelengths	is	the	net	
result	of	where	the	light	travels,	almost	a	straight	line	but	with	a	little	slop	in	it.		The	slop	
will	be	important	later.	
	

	



	
	
	
		A	lot	of	our	results	will	be	similar	to	Fermat’s	Principle	that	light	travels	on	the	path	of	
least	time	from	A	to	B.		I	can	see	where	this	interference	of	waves	can	result	in	light	going	
on	the	path	of	the	minimum	number	wavelengths	but	it’s	hard	for	me	to	understand	how	
light	can	know	which	path	takes	the	shortest	time	without	trying	all	the	other	paths	(at	the	
same	time).		Also,	we	don’t	get	the	slop.	
	
	
	 	 	 	 Flat	Mirrors	
There	may	be	other	paths	that	have	a	local	minimum	in	the	number	of	wavelengths.	Take	
for	instance	the	example	of	a	flat	mirror.		The	shortest	path	from	A	to	B	is	just	a	straight	
line,	but	then	there’re	many	paths	that	reflect	off	the	mirror.	These	paths	have	a	minimum	
number	of	wavelengths	when	the	angle	of	incidence	equals	the	angle	of	reflection,	known	
as	“the	law	of	reflection”.			
	
	

	
	
	
	
			Now	most	books	say	that	a	smooth	surface	gives	specular	reflection	whereas	a	rough	
surface	gives	diffuse	reflection.		Anyone	who	has	used	an	atomic	force	microscope	knows	
that	every	surface,	except	a	crystal	plane,	is	rough.	



	
	
	

	
	
	
		So	how	rough	is	rough?		Mother’s	metal	polish	gives	a	pretty	good	mirror-like	finish	on	
aluminum,	so	you	might	wonder	what	the	grit	size	is	in	the	polish.	A	rough	surface	is	like	
having	several	surfaces	at	random	heights	around	some	average.		Each	one	of	these	
surfaces	has	a	path	of	minimum	number	of	wavelengths,	the	problem	is	that	these	paths	
when	they	arrive	at	B,	all	have	a	somewhat	random	phase	and	so	when	they	add	they	just	
give	some	average	intensity	independent	of	the	angle.		But,	if	the	surface	roughness	is	less	
than,	say,	a	quarter	of	a	wavelength,	our	slop	allows	that	there	will	still	be	a	path	of	
minimum	number	of	wavelengths	with	only	a	little	interference	between	surfaces.		Given	
that	the	wavelength	of	visible	light	is	about	.5	µ,	this	means	that	the	grit	size	should	be	.1	µ	
or	less.		The	people	that	seem	to	care	about	this	on	the	Internet	are	the	people	who	sharpen	
and	shave	with	straight	razors.	They	guess	that	the	grit	size	is	about		.1	µ.		By	the	way,	using	
the	principle	of	the	path	of	least	time	won’t	get	you	very	far	in	this	argument.		Notice	that	a	
mirror	that	may	be	pretty	good	in	the	red	may	not	be	so	great	in	the	blue	and	for	sure	won’t	
be	great	in	the	ultraviolet.		Ultraviolet	mirrors	need	to	be	very	smooth.		Similar	reflections	
happen	with	sound	waves.	You	probably	have	all	seen	the	reflector	behind	a	microphone	at	
a	football	game	where	they’re	trying	to	focus	sounds	from	a	distance.	Here	you	want	a	good	
reflector.	In	a	concert	hall	you	want	just	the	opposite.	You	want	walls	that	give	diffuse	
reflection.		The	problem	is	complicated	by	the	fact	that	the	wavelength	of	audible	sound	
goes	from	centimeters	to	meters	and	also	the	speed	of	sound	is	much	lower	than	light,	so	
you	get	reflections	off	the	walls	that	start	interfering	both	constructively	and	destructively	
causing	local	variations	in	the	sound	intensity	which	depend	on	frequency.		It	is	a	mess!	
	
	
	
	
	
	
	 	 	 	 Curved	Mirrors,	Focusing	of	Light	
	
The	subject	of	curved	mirrors	is	usually	approached	by	using	the	law	of	reflection.	But	
since	this	”law”	came	about	while	we	were	thinking	about	waves,	let’s	stick	with	waves.		
We	usually	want	a	curved	mirror	to	focus	light	and	so	in	our	analysis	what	we	want	to	
happen	is	that	the	different	paths	reflecting	off	the	mirror	will	arrive	at	some	point	(the	
focal	point)	with	the	same	phase	and	will	therefore	interfere	constructively	
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Assuming	the	waves	are	in	phase	at	the	vertical	line	through	F,	
	
to	be	in	phase	at	F	we	need	F	–	x	+	"(𝐹 − 𝑥)( + 𝑦(		=	2F	
	
We	show	the	light	as	rays	coming	in	because	we	know	that	light	travels	essentially	in	a	
straight	line	in	air	but	remember,	these	are	waves.	
	
So:		F	+	x	=	
	
Squaring	both	sides	and	reducing,	we	get	𝑥 = 	𝑦(/4F	
	
So,	the	shape	of	the	mirror	is	a	parabola.	Does	this	obey	the	“law	of	reflection”?		Check	for	
yourself,	but	that	is	baked	into	our	approach.	
	
	A	spherical	shape	does	not	focus	very	well	and	so,	as	is	pointed	out	in	the	books,	the	
parabola	gets	rid	of	what	otherwise	would	be	spherical	distortion.	But	hold	on.	The	
parabola	is	fine	for	an	object,	which	is	far	from	the	mirror,	but	it	is	not	magic.	Let’s	say	that	

F	-	x	

"(𝐹 − 𝑥)( + 𝑦(	

"(𝐹 − 𝑥)( + 𝑦(	



we	bring	the	object		closer	and	closer	to	the	mirror.		In	this	case,		the	focus	moves	further	
and	further	from	the	mirror.	At	some	point	we	get	to	where	the	object	and	the	focus	are	at	
the	same	point	in	which	case	the	light	goes	out	from	the	object	to	all	points	on	the	mirror	
and	then	returns	on	the	same	path	to	the	focus.		The	shape	of	a	mirror	that	does	this	is	a	
spherical	shape,	not	a	parabolic	shape,	with	the	focus	at	the	center.	In	this	case	the	sphere	
gets	rid	of	the	“parabolic	distortion”.		So,	one	shape	does	not	work	for	all.		For	a	shallow	
mirror,	say	much	shallower	then	the	focal	length,	a	parabolic	mirror	is	very	similar	to	a	
spherical	mirror	which	has	a	radius	of	two	times	the	focal	length	of	the	parabolic	mirror.	
	Now	how	good	does	the	mirror	need	to	be?		If	we	want	light	from	different	parts	of	the	
mirror	to	arrive	at	the	focal	point	in	phase,	the	mirror	has	got	to	be	accurate	to	well	less	
than	a	quarter	of	a	wavelength,,	probably	around	1/10	to	1/20	of	a	wavelength.		For	visible	
light	this	is	25	to	50	nm.		As	we	have	already	shown,	the	mirror	cannot	be	rough	compared	
to	a	wavelength.	
				So	let’s	go	back	to	objects	at	infinity.	Consider	the	TV	satellite	dish.		Mine	picks	up	two	
satellites,	one	at	110°	and	the	other	at	119°,	a	9°	separation	in	the	horizontal	plane.		It	has	
separate	detectors	near	the	focal	point	for	these	two	satellites.		A	parabolic	reflector	is	a	
good	reflector	on	axis	but	when	you	get	waves	coming	in	off	axis,	as	is	true	from	these	two	
satellites,	its	focusing	deteriorates.	One	property	of	the	spherical	mirror	is	that	it	has	no	
axis,	All	angles	have	this	same	property	and	the	focus	just	moves	around.	So	one	might	
want	a	TV	dish	which	is	spherical	in	the	horizontal	plane	and	parabolic	in	the	vertical	
plane.		Now	take	a	good	look	at	your	satellite	dish.	You	will	notice	that	it	is	neither	round	
(broader	in	the	horizontal	direction)	nor	axially	symmetric	(more	curved	in	the	vertical	
direction).		It	looks	to	me	like	a	hybrid	mirror	which	is	parabolic	vertically	and	spherical	
horizontally.	By	the	way,	these	reflectors	are	quite	shallow.		Mine	has	a	depth	to	focal	
length	of	about	1/10.		It	has	a	vertical	width	to	focal	length	of	1.0.		Large	radio	telescopes,	
which	cannot	move,	are	spherical	so	that	all	incoming	directions	are	treated	the	same	and	
the	“pointing”	is	done	by	moving	the	detector	to	different	focal	points.	
		Now	we	dig	deeper	into	mirrors.	The	question	is	how	well	a	perfect	parabolic	mirror,	
which	is	perfectly	smooth,	can	focus	light	from	infinity.		We	mentioned	that	our	straight	
line	has	some	slop,	so	we	might	expect	the	image	size	to	be	of	the	order	of	a	fraction	of	a	
wavelength.	But	life	is	more	complicated	than	that.		We	need	to	get	separate	paths	to	
interfere	coherently	at	the	focal	point	and	so	we	must	consider	the	geometry	of	these	
separate	paths.		Looking	down	from	the	top	of	the	mirror,	if	we	move	off	to	the	left	of	the	
focal	point,	the	paths	for	the	waves	from	the	right	side	mirror	are	now	longer	and	the	paths	
from	the	left	side	of	the	mirror	are	shorter.		At	some	distance	to	the	left	of	the	focal	point	
the	average	of	the	waves	from	the	right	side	of	the	mirror	and	the	left	side	of	the	mirror	
will	interfere	destructively	and	there’ll	be	no	light	at	that	point.	This	would	be	the	half-
width	of	the	focus	spot.		If	the	mirror	were	square,	it	is	easy	to	see	how	an	element	on	the	
right	side	could	interfere	with	a	corresponding	element	on	the	left	side,	spaced	apart	by	
half	the	width	of	the	mirror	and	so	on	across	the	whole	mirror.	The	distance	from	the	axis	
at	which	this	occurs	we	can	call	the	half-width	of	the	focal	spot.	
		One	can	also	argue	for	this	square	mirror	that	this	total	interference	occurs	when	the	light	
path	from	the	centroid	of	the	right	side	of	the	mirror	is	one-half	a	wavelength	longer	than	
the	path	from	the	centroid	of	the	left	side	of	the	mirror.		The	angle	between	the	axis	of	the	
mirror	and	the	line	from	the	point	of	total	interference	to	the	center	of	the	mirror	is	equal	
to	half	the	wavelength	of	light	divided	by	the	distance	between	the	two	centroids.	That	is,	q	



=	l/D,	where	D	is	the	width	of	the	mirror.	If	you	multiply	this	by	the	distance	to	the	mirror,	
the	focal	length,	you	then	get	the	half-width	of	the	spot	focused	at	the	focal	point.	
			Now	a	circular	mirror	is	a	little	harder	to	analyze.	What	we	will	use	as	an	estimate,	is	to	
take	the	distance	between	the	centroids	of	the	right	and	left	sides	of	the	mirror	and	again	
calculate	the	half-width	of	the	focus	spot,	in	this	case	the	radius	of	the	spot.		The	centroid	of	
a	semicircular	disc	is	4R/3	p	from	the	flat	side.		This	gives	the	distance	between	the	
centroids	as	0.85	R.	This	is	less	than	the	square	mirror	because	the	round	mirror	is	more	
weighted	toward	the	center	of	the	mirror.		All	this	gives	the	radius	of	the	focus	spot	as	1.18×	
f×l×/2R.		OK,	the	real	answer	is	1.22	when	you	integrate	the	phase	over	the	surface	of	the	
mirror,	but,	as	they	say	back	home,	this	is	close	enough	for	government	work	and	we	said	
we	are	going	to	try	and	stay	away	from	any	fancy	mathematics.		This	spot	radius	in	terms	of	
the	diameter	of	the	mirror,	D,	is	1.18×	l×f/D.		f/D	is	called	the	f-number	of	the	mirror.	We	
will	run	into	the	f-number	again	when	we	do	lenses.		A	formal	analysis	shows	that	84%	of	
all	the	light	from	the	mirror	falls	within	this	spot.	The	rest	of	the	light	falls	in	circular	rings	
around	the	central	spot	but	decreases	in	intensity	with	increasing	distance	from	the	axis.	
			We	notice	a	couple	of	things	from	our	result.	The	first	is	that	if	the	diameter	of	the	mirror	
is	just	a	few	wavelengths,	then	the	spot	size	is	of	the	order	of	the	focal	length	of	the	mirror,	
which	means	the	mirror	didn’t	focus	at	all.		Don’t	expect	those	reflectors	behind	the	
microphones	at	sporting	events	to	focus	the	sound	from	the	bass	drum	of	the	marching	
band.		If	we	want	a	spot	size	close	to	the	wavelength	of	light,	then	we	need	a	mirror	whose	
f-number	is	about	one.		By	the	way,	my	TV	dish	has	an	f-number	of	one.		My	guess	is	that	
the	wavelength	of	the	TV	signal	is	about	100th	of	the	diameter	of	the	dish,	or	about	7mm.		
Not	too	bad	a	guess	because	the	actual	wavelength	is	about	20	mm.		The	second	is	that	we	
notice	that	the	spot	size	depends	on	the	wavelength.	Red	light	would	have	a	larger	spot	size	
than	blue	light.	So	if	we	had	white	light,	the	spot	would	become	redder	as	we	go	toward	the	
outside	of	it,	yet	some	people	say	that	a	mirror	has	no	chromatic	aberration.		But	of	course	
it	does,	light	is	a	wave	and	the	waves	“have	color”,	depending	on	their	wavelength.		What	
they	mean	is	that	the	law	of	reflection	works	the	same	for	all	wavelengths	and	the	focal	
length	does	not	depend	on	the	wavelength.	The	sound	mirror	behind	the	microphone	treats	
high	frequencies	and	low	frequencies	much	differently.	
			I	was	the	co-author	of	a	patent	for	a	neat	optical	illusion	which	involved	two	parabolic	
mirrors.	These	mirrors	were	such	that	the	focal	point	of	each	one	of	the	mirrors	was	at	the	
surface	of	the	other	mirror	when	the	two	mirrors	were	put	face-to-face.	Below	is	a	picture	
of	the	illusion.		The	screw	is	down	in	the	bottom	of	the	device.	
	
	
	
	
	



	
	
	
	

														 	
	
	
From	the	diagram	you	can	see	that	an	object	on	the	bottom	mirror,	when	illuminated,	will	
appear	as	a	real	image	at	the	hole	in	the	top	mirror.	In	fact,	the	surface	of	the	bottom	mirror	
makes	an	image	at	the	hole	so	the	hole	does	not	look	like	a	hole,	it	looks	like	a	mirror.	The	
illusion	was	discovered	from	two	mirrors	sitting	on	top	of	each	other,	which,	oddly	enough,	
had	just	the	right	focal	lengths,	and	someone	noticed	that	dust	was	collecting	on	the	hole.	
				
These	parabolic	mirrors	can	operate	in	reverse.	If	we	place	a	light	source	at	the	focal	point	
the	mirror	should	produce	a	parallel	beam	going	out	to	infinity.	Well,	almost	parallel,	it’s	
those	damn	waves	again.		Using	the	same	analysis	as	we	did	for	the	focus	we	find	that	the	
beam	spreads	with	a	half	angle	of:		∅ = 1.22𝜆/𝐷.	This	applies	to	light	from	any	circular	
aperture	whether	it	be	a	laser,	a	searchlight,	or	just		a	hole.		For	instance	if	we	take	a	beam	
coming	out	of	a	red	laser	which	has	a	½	inch	opening,	then	the	spot	on	the	moon	will	be	
about	300	kilometers	wide.			Not	such	a	tiny	spot!	



				This	business	of	getting	rays	to	arrive	at	a	spot	in	phase	has	other	applications	than	just	
mirrors,		especially	if	one	has	control	of	the	phase	of	the	source	of	the	wave.		I	remember	
traveling	in	Iowa	in	the	old	days	out	in	the	countryside,	I	would	come	across	a	radio	
transmission	station	which	had	two	antennas.	Why	two	antennas,	isn’t	one	good	enough?		
The	single		antenna	radiates	radio	waves	in	all	directions	equally,	but	the	radio	station	
would	like		to	beam	the	energy	toward	the	city	which	is	a	few	miles	away.			Consider	the	
following	diagram.	Let’s	say	we	placed	the	antennas	a	quarter	of	a	wavelength	apart	and	
operated	them	a	quarter	of	a	cycle	out	of	phase	with	the	tower	on	the	left	advanced	in	
phase.			When	a	wave	from	the		left	tower	reaches	the	right	tower,	both	waves	would	be	in	
phase	toward	the	city	with		constructive	interference.			In	the	direction	opposite	the	city,	
though,	when	the	wave	from	the	right-hand	tower	gets	to	the	left	hand	tower	the	waves	are	
now	out	of	phase	and	so	in	the	opposite	direction	of	the	city	we	get	destructive	
interference.		Shown	is	an	approximation	of	the	intensity	pattern,	given	what	tools	I	have	in	
Word.		As	a	mental	exercise,	think	of	what	the	intensity	distribution	is	like	as	the	phase	
goes	from	one	quarter	of	a	wavelength	advanced	all	away	to	one	wavelength,	which	of	
course	is	equal	to	zero	wavelengths.	
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One	can	add	more	antennas	to	refine	the	intensity	distribution.			
	
	Another	use	of	varying	the	phase	of	the	emitters	is	in	ultrasound.	Here	an	array	of	
piezoelectric	emitters	operate	at	the	same	frequency	but	with	the	phase	between	the	
various	emitters	being	varied	to	move	the	focal	point	around	in	2	dimensions		to	produce	
an	image	of,	say,	a	liver.																															
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	Here	is	an	example	of	beam	steering.	the	phase	can	also	be	used	to	focus	the	beam	at	a	
certain	distance	away	from	the	emitter.	This	phased	array	idea	can	also	be	used	in	
detection	to	determine	in	what	direction	a	source	is	located.			For	a	telescope,	the	angular	
resolution	is	the		wavelength	of	the	radiation	being	detected	divided	by	the	diameter	of	the	
receiver.	For	a	1	m	optical	telescope,	this	resolution	is	0.1	arcseconds.		For	a	radio	telescope	
operating	at	a	wavelength	of	about	1	cm,	to	get	the	same	resolution	would	require	a	
receiver	with	a	diameter	of	20km.			This	can	be	done	with	the	phased	array	of	radio	
telescopes	in	which	the	detected	phase	can	be	corrected	so	that	the	signals	arrive	with	the	
same	phase	at	some	point,	the	point	being	in	the	electronics.		From	these	phase	corrections	
one	can	then	determine	the	direction	that	the	radiation	is	coming	from.			An	example	of	
such	a	phased	array	is	the	radio	telescope	array	in	New	Mexico	which	the	reader	can	look	
up	on	the	Internet.	This	array	can	be	made	to	have	a	size	of	about	30	kilometers		giving	an	
angular	resolution	of	0.2	to	0.04	arcseconds.	
	Another	example	is	with	submarines.	One	can	detect	the	direction	and	position	of	other	
submarines	by	sending	out	a	Ping	and	looking	for	reflections.	This	would	be	a	bad	idea	
since	you’re	just	telling	the	other	submarine	where	you	are.	A	better	idea	would	be	to	
detect	passively	noise	from	the	other	submarine.	You	would	probably	want	to	look	for	
frequencies	which	are	well	below	1	kHz,		maybe	even	60	cycles.			A	problem	is	that	this	
velocity	of	sound	in	water	is	about	1500	meters	per	second	which	makes	the	wavelength	in	



water	quite	large.			For	the	frequencies	mentioned,	the	wavelength	would	be	one	and	a	half	
meters	or	longer.		If	one	wants	an	angular	resolution	of	1°,	then	the	size	of	the	array	would	
need	to	be	over	100	m.			This	is	about	the	length	of	a	submarine	and	so	maybe	a	better	idea	
is	to	tow	a	long	boom	of	detectors	behind	the	submarine.	
	
				Light	traveling	in	a	transparent	media	
	The	interaction	of	light	with	electrons	in	a	transparent	media	and	the	subsequent	re-
radiation	from	the	electrons	causes	the	speed	of	the	light	to	slow	down	in	the	media	from	
what	it	was	in	the	vacuum.	The	ratio	of	the	speed	of	light	in	the	vacuum	to	the	speed	of	light	
in	the	media	is	call	the	index	of	refraction	and	is	greater	than	one.	The	frequency	of	the	
wave	stays	the	same	and	so	the	slower	speed	means	a	shorter	wavelength.	If	the	light	is	
going	to	go	on	a	path	of	the	minimum	number	of	wavelength	then	the	light	will	tend	to	stay	
away	from	areas	of	a	short	wavelength	and	prefer	areas	of	longer	wavelength.			The	path	
may	be	physically	longer	but	still	will	be	a	path	of	a	fewer	number	of	wavelengths.			Let’s	
take	the	standard	case	with	light	going	from	a	medium	with	an	index	of	n1	into	a	medium	
with	index	n2	with	n2>n1	
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We	will	calculate	the	number	of	wavelengths	from	A	to	B	and	then	minimize	that	number	
by	moving	X1	around	to	get	the	path.	The	wavelength	in	region	one	is	l/n1	and	in	region	
two,	l/n2,	where	l	is	the	wavelength	in	vacuum.	
	
	
#	of	wavelengths	=	√𝑋1( + 𝑌1(		𝑛1/l	+√𝑋2( + 𝑌2(	n2/l		with	X1+X2	=	constant=C	
	
take	the	derivative	wrt		X1	and	set	it	to	zero,		we	get,	with	dX2/dX1	=	-1	
	

																			n1sinq		=	n2sinj			Snell’s	Law	



	
	Yes,	it	is	also	the	path	of	minimum	time.	
	Now	if	the	light	goes	from	n2	into	n1,	then	the	angle	𝜑	will	reach	a	point	where	𝜃	goes	to	
90°	and	sin𝜃	will	be	greater	than1,	which	is	not	allowed.	In	this	case	the	light	will	reflect	off	
the	surface	between	n2and	n1.		This	phenomenon	is	called	total	internal	reflection.	
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This	may	not	be	the	path	of	minimum	number	of	wavelengths	between	A	and	B.			The	
wavelength	of	light	is	greater	in	n1	than	in	n2	so	the	path	of	minimum	number	of	
wavelengths	that	light	travels	along	is	one	where	light	travels	some	distance	in	n1	very	
near	the	interface	and	then	back	into	n2	to	point	B.		The	physical	path	is	longer	but	the	
number	of	wavelengths	is	less.	
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The	light	cannot	go	very	far	into	n1	or	the	path	will	not	be	within	1/4	of	a	wavelength	of	
the	minimum	number	wavelengths.	We	know	that	if	X	is	1/8	of	a	wavelength	then	the	light	
would	be	1/4		of	a	wavelength	out	of	phase	with	the	path	that	goes	right	along	the	interface	
and	so	the	intensity	of	light	in	n1	will	drop	very	quickly	with	X.			From	our	previous	
arguments,	then,	X	will	be	no	more	than	about	1/8	of	a	wavelength.			This	light	in	n1	is	
called	the	evanescent		wave.			A	more	complete	analysis	shows	that	the	light	in	n1	drops	off	
exponentially	with	a	negative	exponent	of	2p	times	the	wavelength.		
	
	
	
	
LENSES	
	
Lenses,	just	as	mirrors,	can	focus	light	from	different	paths	to	a	single	point.			Again,	the	
idea	is	to	make	the	number	of	wavelengths	on	each	of	the	paths	the	same	so	that	the	light	
on	the	different	paths	will	arrive	at	the	focal	point	in	phase.			Below	I	have	laid	out	a	Plano	
Convex	lens,	meaning	the	lens	is	flat	on	one	side	and	convex	on	the	other.		I	put	the	origin	at	
the	surface	of	the	convex	side	and	have	indicated	other	distances	with	dashed	lines.	What	
we’re	going	to	do	is	calculate	what	the	shape	of	the	surface	of	the	lens	should	be	to	make	
the	different	paths	arrive	at	the	focal	point	with	the	same	phase.		We	want	Y	as	a	function	of	
X.		The	waves	are	in	phase	before	they	enter	the	flat	side	of	the	lens	i.e.	a	plane	wave.	



						Canceling	out	the	wavelength	in	air,	we	have			

							

	
This	reduces	to:	
	

			 	
This	gives	Y	as	a	function	of	X	for	the	lens	surface	of	this	aspheric	
lens.	
	
For	X<<F	(a	thin	lens)	we	have	
	

			 	
	
This	is	the	equation	of	a	circle	(ignoring	terms	of	x	squared)	with	the	origin	at	the	edge	of	
the	circle	on	the	X	axis,	with:	
	

					 	
where	R	is	the	radius	of	the	circle.				So	for	a	thin	lens,	the	shape	in	three	dimensions	is	just	
a	spherical	lens.	
	
	
	



For	X>>F	we	have	
	

	
	
These	are	2	straight	lines	passing	through	the	origin	with	slopes	of:	
	

		 	
This	correct	lens	is	called	an	aspheric	lens	because	it	is	not	spherical	(no	kidding),	but	then	
again,	it’s	the	lens	that	does	the	correct	job.	You	will	now	see	cameras	advertised	with	
aspheric	lenses.			Spherical	lenses,	which	are	easier	to	make,	have	spherical	aberrations	just	
as	the	spherical	mirror	did.	
	
	One	may	think	that	we	should	check	whether	Snell’s	Law	is	obeyed.	Remember	that	Snell’s	
Law	was	a	result	of	our	approach,	not	the	other	way	around.	Snell’s	Law	is	baked	in.		So	
how	good	(or	bad)	are	these	lenses?			Let’s	start	with	the	spherical	lens.	We	said	that	it	had	
aberrations	but	let’s	be	quantitative	and	find	out	how	bad	they	are.			We	will	turn	the	
problem	around.	Instead	of	finding	the	shape	that	makes	the	focal	length	constant	for	all	
values	of	X	(the	aspheric	lens),	let’s	take	the	shape	to	be	spherical	with	radius	R	and	find	
out	how	the	focal	length	varies	with	the	thickness	of	the	lens.		Consider	the	same	drawing	
with	the	flat	side	of	the	lens	going	through	the	center	of	the	circle.		Here	we	have,	with	the	
wavelength	in	air	being	canceled	out:		
	

	
But:	

				
	
Substitute	and	do	the	algebra,	and:		
	

	
	
We	get	the	standard	result	for	the	focal	length	but	only	when	X	is	zero,	otherwise	the	focal	
length	gets	shorter	as	the	thickness	increases.	For	an	index	of	1.5	we	get	that	dF/	dX	is	
equal	to	about	two.	Not	a	trivial	amount.			As	the	thickness	of	the	lens	changes	by	dX,	the	
focal	length	for	that	part	of	the	lens	decreases	by	twice	that	amount.	



	
The	focal	length	decreases	as	we	go	from	the	center	of	the	lens	to	the	outer	parts	of	the	lens	
and	so	the	focus	gets	spread	out	along	the	axis	of	the	lens.	
	
How	good	is	the	aspheric	lens?		As	with	the	circular	mirror,	we	have	the	problem	of	the	
diffraction	pattern	of	light	passing	through	a	circular	aperture.			The	radius	of	the	focal	spot	
is	1.22lf/D	where	D	is	the	diameter	of	the	lens,	the	same	as	the	mirror.		The	smaller	the	F	
number,	f/D,	the	smaller	the	spot	size.			Let’s	put	in	some	numbers.	For	a	wavelength	of	half	
a	micron	and	an	F	number	of	4	we	get		a	spot	diameter	of	14	microns,	about	the	pixel	pitch	
of	the	sensor	of	a	SLR	camera.	
	
	The	idea	of	the	lens	was	to	make	several	paths	the	path	of	the	minimum	number	of	
wavelengths.	They’re	also	the	paths	of	minimum	time.	These	two	approaches,	the	path	of	
minimum	time	and	the	path	of	the	minimum	number	of	wavelengths,	have		
tracked	each	other	so	far,	but	when	we	get	to	general	relativity,	where	time	and	space	get	
messed	up,	but	the	speed	of	light	stays	constant,	these	two	approaches	will	part	company.			
Guess	which	one	will	be	right?	
	
There	is	another	way	to	make	the	lens	and	that	is	not	by	making	a	shape,	but	by	varying	the	
index	of	refraction	of	the	lens.		The	path	of	the	minimum	number	of	wavelengths	will	shy	
away	from	the	area	of	the	high	index	of	refraction,	which	is	the	area	of	shorter	wavelength.	
Although	the	physical	path	is	longer	than	a	straight	line,	the	number	of	wavelengths	is	
shorter.	The	path	will	be	concave	toward	the	higher	index	of	refraction.				Such	a	lens	is	
called	a	GRIN	lens	which	stands	for	GRaded	INdex	of	Refraction	lens.	
	



	
	
These	lenses	are	sometimes	used	to	get	light	from	an	LED	into	an	optical	fiber	
	and	are	typically	about	1	mm	in	diameter.		
	
	Here	is	another	example	of	graded	index	which	I	will	call	the	light	merry-go-round.	
	Let	us	say	that	we	have	a	circular	piece	of	glass	in	which	the	index	of	refraction	decreases	
linearly	toward	the	outside	diameter.			Let	us	say	the	index	of	refraction	looks	like	the	
following.	
	

																																		 	
If	we	calculate	the	number	of	wavelengths	in	a	diameter	with	radius	r	then	we	get:	
	
			

	 		
	
Minimizing	this	number	by	taking	the	derivative	and	setting	it	equal	to	zero,	we	get:		
	

																 	
At	this	radius	the	light	will	go	around	in	a	circle.	This	leaves	the	following	questions:	
	

1. 	Will	it	work?	
2. 	Can	you	pump	it	up?	
3. Will	the	light	beam	separate	into	filaments	in	which	each	filament	has	an	integral	

number	of	wavelengths	as	it	goes	around	the	diameter?	
4. 	Will	the	filaments	interfere	destructively?	

	
	I	don’t	know	the	answers,	only	the	questions.	
	
	



LIGHT	PIPES,	OPTICAL	FIBERS,	AND	THE	LIKE	
	
Edge	lit	LCD	TV	
In	a	medium	with	an	index	of	refraction	greater	than	one,	you	can	use	total	internal	
reflection	to	guide	the	light	down	through	the	medium	as	long	as	the	light	is	at	shallow	
angles.		A	common	light	pipe	is	one	that	is	in	almost	all	households	and	is	the	one	that	
creates	the	back	lighting	for	an	LCD	television	screen.	This	light	guide	is	a	sheet	of	plastic	
(or	glass)	which	has	LEDs	on	one	or	two	edges	which	direct	light	into	the	plastic.	The	
plastic	acts	as	an	internal	reflecting	light	guide	which	of	course	does	no	good	because	that	
doesn’t	illuminate	the	TV	screen	which	is	on	one	face	of	the	light	pipe.	So,	what	one	wants	
to	create	is	a	“leaky”		light	guide	which	leaks	light	out	of	the	front	face	toward	the	LCD	
elements.	One	way	to	do	this	is	to	put	bumps	or	depressions	on	the	light	guide	which	cause	
the	light	to	scatter	at	various	angles	and	some	of	it	will	go	out	the	front	face.	Some	will	go	
out	the	back	face	but	you	can	put	a	reflector	there	to	redirect	the	light	to	the	front	face.	This	
is	shown	in	the	drawing	below.	
																						
																			

	
As	the	light	goes	from	left	to	right	with	some	of	it	scattering	out	through	the	front	face,	the	
intensity	of	light	in	the	light	pipe	diminishes.	Therefore	in	this	illustration	the	bumps	get	
bigger	and	bigger	as	one	goes	from	left	to	right.	One	can	also	do	this	by	keeping	the	height	
of	the	bumps	the	same	and	increase	the	number	of	bumps	toward	the	right.		Various	shapes	
of	bumps	and	depressions	have	been	used.		One	can	also	print	dots	of	a	diffuse	reflective	
material	on	the	back	face	of	the	light	pipe	to	scatter	the	light	out	through	the	front	face.	One	
can	put	LEDs	on	both	edges	of	the	light	pipe	and	then	the	largest	bumps	would	be	in	the	
center	of	the	screen.	
	
Light	pipes	for	data	transmission	
	The	most	popular	use	of	light	pipes	is	an	optical	fiber	to	transmit	data.	These	fibers	have	
the	capability	of	moving	data	at	higher	rates	and	much	further	than	copper	wire,	which	is	
typically	used	for	telephones.		An	optical	fiber	consists	of	a	small	cylindrical	strand	of	glass	
which	had	a	fairly	high	index	of	refraction.	Any	imperfections	in	the	surface,	though,	would	
cause	the	internal	reflection	to	get	messed	up	a	little	bit	and	some	of	the	light	would	escape.	
To	avoid	this,	a	cladding	is	put	on	the	outside	of	the	fiber	of	a		material	that	has	a	lower	
index	of	refraction.	The	total	internal	reflection	therefore	occurs	at	the	interface	of	the	core	



of	the	fiber	and	the	cladding.		The	cladding	is	typically	pure	silica	and	the	core	is	silica	
which	has	been	doped	to	have	a	higher	index	of	refraction.	To	analyze	an	optical	fiber	
properly,	one	must	treat	light	as	an	electromagnetic	wave	in	a	wave	guide.	This	is	well	
beyond	our	simple	approach	and	so	we	are	going	to	forge	ahead	with	“light	is	a	wave”	and	
see	how	things	go.	

																													 	
			
	
Typical	fibers	operate	in	the	infrared	with	the	largest	angle	of		light	traveling	through	the	
core,	with	respect	to	the	straight-through	path,	of	about	0,1	to	0.15	radians,	a	fairly	small	
angle.	The	largest	accepted	angle	into	the	fiber	is	the	index	times	the	maximum	angle	
inside.	This	maximum	accepted	angle	is	called	the	numerical	aperture,	NA,	of	the	fiber.	The	
wavelength	in	the	fiber	is	typically	0.5	to	1	micron	and	the	index	in	the	core	is	typically	1.5.	
Fibers	come	in	basically	two	kinds.	One	is	a	multi-mode	fiber	which	has	a	core	with	a	radius	
of	several	wavelengths	of	light	and	the	other	is	a	single-mode	fiber	where	the	core	radius	is		
only	a	few	wavelengths	of	light.		We	will	consider	the	differences	of	these	two	fibers	in	the	
following.	
	
Multi-mode	Optical	Fiber					
			A	typical	multi-mode	fiber	has	a	core	which	is	either	50	or	62.5	µm	in	diameter.		As	
shown	below,	there	are	many	paths	in	a	multi-mode	fiber,	some	longer	than	others.	The	
shortest	path,	of	course,	is	straight	down	the	core.	The	other	paths	which	are	reflected	off	
of	the	cladding	are	longer	and	therefore	take	more	time	to	travel	down	the	fiber.	A	path	
that	is	it	at	an	angle	q	with	respect	to	the	axis	of	the	fiber	will	have,	in	a	length	L	of	fiber,	a	
path	which	is	longer	than	the	path	down	the	axis	by	the	amount			D	=	L(1/cosq	-1)	@	
L𝜃(/2	.		For	1km	of	fiber	and	q	=	0.1(the	maximum	angle)	this	difference	is		5mm,	
independent	of	the	diameter	of	the	fiber.	If	a	square	wave	or	sine	wave	signal	were	sent	
down	the	fiber	with	peaks	spaced	at	5	mm,	at	the	end	of	1	km	the	signal	would	be	wiped	
out	by	this	dispersion.	



	
	
		Let’s	calculate	what	frequency	that	signal	would	be.		The	speed	of	a	sine	wave	is	the	
frequency	times	the	wavelength	which	is	just	equal	to	the	velocity	of	light	divided	by	the	
index	of	refraction	for	the	fiber.	
			f×5mm	=	c/n		which	gives	f	=	40	Mhz	
For	a	distance	of	1	km,	this	fiber	can	handle	only	signals	below	40	MHz,	called	a	bandwidth	
of	40	Mhz-km,	not	great	for	sending	lots	of	information	long	distances	but	OK	just	for	
transporting	light,	such	as	in	medical	applications.	This	result	is	independent	of	the	
diameter	of	the	fiber,	but	varies	as	the	inverse	of	the	square	of	the	numerical	aperture.	
Another	problem	with	this	multi-mode	fiber	is	that	these	different	paths	can	interfere	
constructively	at	various	places	in	the	fiber.	This	causes	a	speckle	pattern	of	bright	spots	
coming	out	of	the	end	of	the	fiber,	each	traveling	at	a	different	velocity.	These	spots	can	
number	in	the	hundreds	for	a	60	µm	step-index	fiber.	This	speckle	pattern	is	dependent	on	
any	slight	bending	of	the	fiber,	which	alters	the	different	optical	paths	and	therefore	the	
position	of	the	spots.	You	can	make	an		intrusion	alarm	by	using	this	effect	to	detect	slight	
motion	in	a	footpath.	
I	notice	that	you	can	buy	50	µm	fiber	which	has	a	range	of	bandwidths	up	to	2000	MHz-km	
(OM3),	so	what	is	going	on?	Well,	what	is	going	on	is	a	graded-index	optical	fiber,	much	like	
the	GRIN	lens	that	we	talked	about	earlier.	The	idea	in	the	GRIN	lens	was	to	have	all	the	
optical	paths	have	the	same	number	of	wavelengths,	so	that	they	would	arrive	at	a	point	all	
in	phase.	It	is	the	same	idea	with	the	graded	index	optical	fiber,	having	the	longer	paths	
traverse	an	area	where	they	have	longer	wavelengths.		A	lower	index	of	refraction	means	a	
longer	wavelength,	so	the	idea	is	to	have	the	index	of	refraction	decrease	as	you	go	towards	
the	outer	edge	of	the	core	where	the	longer	paths	travel.	The	index	profile	of	a	Corning	50	
µm	OM3	fiber	is	shown	below.	Notice	that	there	is	not	a	large	change	in	the	index	of	



refraction	from	the	center	to	the	edge	of	the	core,	the	difference	being	a	little	over	one	
percent.	
	

	
	

	
It	seems	that	the	manufactures	have	put	all	of	their	efforts	of	graded	index	into	50	µm	
fibers,	so,	the	50	µm	fibers	have	a	much	higher	bandwidth	than	the	62.5	µm	fibers.	This	
difference	is	not	caused	by	the	different	diameters	of	the	fibers.	Nonetheless,	the	
constructive	interference	in	the	fiber	still	remains	but	in	a	diminished	amount.	



	
Single-mode	optical	fiber	
			The	idea	here	is	to	make	a	fiber	where	there	is	none	of	that	constructive	interference	
going	on	and,	in	waveguide	language,	consists	of	only	one	electromagnetic	mode	in	the	
core.		We	are	not	going	to	do	waveguide	modes	and	will	continue	on	our	“light	is	a	wave”	
theme	and	use	reasonable	assumptions	in	order	to	make	some	calculations	(I	call	it	
reasonable,	but	others	call	it	hand	waving).	We	want	to	calculate	the	diameter	needed	for	
such	a	fiber,	and	a	parameter	called	the	waveguide	chromatic	dispersion.	We	will	also	talk	a	
little	about	dispersion-compensated	fibers.		Since	we	are	going	to	do	some	calculations,	we	
need	to	be	careful	with	our	numbers.	I	will	take	specifications	from	a	Corning	SMF-28	
optical	fiber	which	I	understand	to	be	a	fairly	standard	single-mode	fiber.	
	
	

	

	
	
	



	
	
	
Fiber	diameter	
We	want	a	fiber	that,	given	the	different	paths	traveling	down	the	core	and	recombining,	
keeps	the	phase	shifts	small.	Consider	the	drawing	below.		
We	treat	the	fiber	as	a	step-index	fiber		It	shows	the	path	for	light	at	the	critical	angle	q9	in	
the	core.		We	want	light	traveling	along	this	path	from	A	to	B	to	not	vary	in	phase	very	
much	from	the	path	down	the	axis	.	At	most,	we	want	the	phase	of	the	two	paths	to	not	vary	
by	more	than	half	of	a	wavelength.	Any	more	than	that	runs	the	risk	of	getting	into	the	area	
of	constructive	interference	between	the	two	paths,	that	is,	the	fiber	is	no	longer	single	
mode.		We	can	do	this	by	making	the	core	of	the	fiber	small.	Using	the	½	wavelength	
criteria,		the	path	at	the	critical	angle	will	not	even	exist,	because,	when	it	reflects	back	
down	to	the	axis	of	the	core,	it	will	interfere	destructively	with	light	traveling	along	the	axis	
(remember	our	argument	that	light	can	go	on	any	path	but	most	paths	are	canceled).	Paths	
at	angles	near	the	critical	angle	will	also	be	attenuated	because	of	this	destructive	
interference.		Therefore,	the	light	will	be	concentrated	along	the	axis	of	the	fiber	with	little	
near	the	edge	of	the	core.		
We	want	the	path	l’	to	be	equal	to	l	+l/4,	where	l	is	the	wavelength	in	the	core.	This	will	
determine	the	radius	R	of	the	core	needed	to	do	this.		Smaller	radii	are	OK	because	they	
give	a	smaller	phase	shift	but	will	have	light	at	the	edge	of	the	core.	
	
	



	
For	small	angles,	q9 	=	q:	/𝑛;		=	NA/𝑛;,	where		NA	is	the	numerical	aperture	of	the	fiber	and	
l	=	l<=>/𝑛;	,	is	the	wavelength	outside	the	fiber	divided	by	the	index	of	the	core.	
l’	=	l/cosq9		@	l×(1	+	q9

	(/2)	;				with	R	@	l×q9 ,		one	gets	D	=	2R	=	l<=>/NA	
		
For	the	SMF-28	fiber	this	gives	a	maximum	diameter	of	1.310/.14	=	9.4	µm	
The	actual	core	diameter	is	8.2	µm	and	so	they	are	on	the	safe	side.	Notice	that	our	
diameter	calculation	is	essentially	equal	to	something	called	the	mode-field	diameter	at	
1310nm	which	they	give	as	9.2	µm.	If	the	light	distribution	across	the	diameter	of	the	fiber	
is	represented	by	a	Gaussian	distribution,	then	the	mode-field	diameter	is	the	diameter	at	
which	the	intensity	has	fallen	to	1/𝑒(of	the	maximum	intensity	on	the	axis.		This	is	
essentially	what	we	calculated,	the	diameter	of	the	light	distribution	out	to	where	the		
distribution	falls	to	near	zero.		So	we	might	say		MFD	≅ l<=>/NA.		This	is	also	true	at	
1550nm	for	this	fiber.	
For	a	given	core	diameter,	as	the	wavelength	decreases,	the	phase	shift	increases		and	the	
fiber	will	cease	to	be	single	mode.	This	is	called	the	cut-off	wavelength.	Since	our	
calculation	gives	the	maximum	diameter	for	a	given	wavelength,	then	it	also	gives	the	
minimum	wavelength,	the	cut-off	wavelength,	for	a	fixed	diameter.		For	the	SMF-28	fiber	
we	get	the	following.		l99 	=	core	diameter	×	NA	=	8.2×	0.14	=	1150nm.		This	is	close	to	the	
1260nm	in	their	specs.	They	may	be	on	the	conservative	side.	
	
Waveguide	chromatic	dispersion	
It	is	clear	from	what	we	have	done,	and	the	fiber	specs,	that	as	the	wavelength	increases,	
the	mode-field	diameter	also	increases.		This	means	that	the	average	path	length	down	the	
fiber	also	increases,	which	decreases	the	group	velocity,	which	means	the	effective	group	
index	of	refraction	increases.	This	effect	is	called	waveguide	chromatic	dispersion	and,	
interestingly	enough,	has	the	opposite	sign	of	the	chromatic	dispersion	that	we	are	familiar	
with.	Usually,	as	light	travels	through	a	transparent	material,	the	index	of	refraction	
decreases	as	the	wavelength	increases.	This	is	called	material	dispersion.		
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We	want	to	calculate	a	value	for	this	waveguide	dispersion,	d𝑛ABB/dl	using	the	longest	
path.	For	small	changes,	the	index	of	refraction(n),	the	velocity	of	light(v),	and	the	path	
length(l)	are	all	related;	
		dn/n	=	-dv/v	=	dl’/l	,	we	use	R=	l<=>/2×NA		and	q9=	NA/𝑛;;	Working	through	
the	algebra	gives;	
						d𝑛ABB/dl		=	(𝑁𝐴)(/2𝑛;×l<=>	=	0.005/micron		with	l<=>=	1310	nm.	
We	missed	on	this	one,	but	we	got	the	sign	right,	the	waveguide	index	increases	with	
increasing	wavelength.	The	real	answer	is	0.011.			
		As	we	know	from	our	previous	discussions	on	internal	reflection,	some	of	the	light	travels	
in	the	cladding	very	near	the	surface	of	the	core.	I	have	seen	in	many	places	the	argument	
that	the	waveguide	dispersion	is	caused	by	the	fact	that	when	the	wavelength	increases,	the	
mode-field	diameter	increases,	and	more	light	goes	into	the	cladding.	This	argument	is	
wrong	for	the	step	index	fiber	because	if	more	light	goes	into	the	cladding,	which	has	a	
lower	index	than	the	core,	then	the	effective	index	will	decrease,	not	increase,	as	is	the	real	
case.		The	argument	has	the	wrong	sign.	
What	is	interesting	about	this	waveguide	dispersion	is	that	at	1310	nm	it	is	equal	to	and	
opposite	the	material	dispersion,	so	that	the	fiber	has	no	chromatic	dispersion	at	1310	nm.	
	
Dispersion	Compensated	Fiber.	
From	the	attenuation	specifications	on	the	fiber,	it’s	clear	that	you	would	like	to	operate	at	
1550nm.	The	problem	is	that		waveguide	index	decreases	because	of	the	light	in	the	
cladding,	caused	by	the	larger	mode	diameter,	and	so	the	dispersion	is	not	compensated	as	
it	is	at	1310nm.	The	game	is	to	create	an	index	profile	across	the	diameter	such	that	when	
the	mode-field	diameter	increases,	and	more	light	goes	into	the	cladding,	the	effective	
index	increases	and	not	decreases.		This	can	be	done	by	putting	a	ring	of	high	index	
material	just	outside	of	the	core-cladding	interface.		Below	are	shown	a	couple	of	instances	
to	illustrate	this.		As	the	mode-field	diameter	increases,	more	of	the	light	goes	into	the	high-
index	ring	to	increase	the	effective	index.		One	can	adjust	the	parameters	such	that	this	
waveguide	dispersion	will	be	equal	and	opposite	to	the	material	dispersion	at	or	near	1550	
nm.	
	



	
	
	
	
	
	
	
	



Particles,	Waves,		and	the	Heisenberg	Uncertainty	Principle	
	
In	1905,	to	explain	the	photo	electric	effect,	Einstein	said	that	light	interacts	as	if	it’s	a	
particle	called	a	photon	with	an	energy	hf,	where	h	is	Planck’s	constant	and	f		is	the	
frequency	of	the	light.	The	momentum	of	this	massless	particle	is,	therefore:	
	p=	E/c	=	hf/c	=	hc/lc	=	h/l	=	momentum	
	
The	shorter	the	wavelength,	the	more	momentum	the	photon	has.	
Let’s	consider	the	case	of	light	shining	through	a	single	slit	onto	a	screen.	There	is	a	
diffraction	pattern	which	spreads	the	beam	out	by	the	angle	𝜃 = F

G
.		About	90%		of	the	

entire	intensity	is	in	the	central	peak	which	I	will	consider	Gaussian	shaped.						
				
	

	
	
	
	

	 	



Now	let’s	consider	that	the	light	consists	of	photons	going	through	the	slit.		The	diffraction	
pattern	is	made	of	many,	many	photons.	Before	they	go	through	the	slit	they	have	a	
momentum	which	is	perpendicular	to	the	slit	with	no	transverse	momentum.	But	,clearly,	
after	they	go	through	the	slit,	there	seems	to	be	some	uncertainty	in	the	transverse	
momentum	because	the	photons	on	the	average	make	a	pattern	which	widens	out.		They	
have	picked	up	transverse	momentum	by	going	through	the	slit	but	in	an	uncertain	way	for	
each	photon.		Just	after	the	photons	have	went	through	the	slit,	let’s	calculate	the	average	
uncertainty	in	their	position	times	the	average	uncertainty	in	transverse	momentum.	We	
consider	the	axis	that	is	across	the	width	of	the	slit..	
The	maximum	uncertainty	in	the		position	of	the		photon	is	half	the	width	of	the	slit,	w/2	
but	50%	of	the	time,	the	photon	is	within	w/4	of	the	center	of	the	slit,	so	we	take	the	
average	uncertainty	in	position	to	be	w/4.	
The	uncertainty	in	the	transverse	momentum	is	a	little	harder	to	calculate,	but	we	will	
make	some	“educated”	guesses.		For	the	central	peak,	if	it	is	somewhat	like	a	Gaussian,	then	
more	than	half	of	the	photons	will	fall	within	1/3	the	maximum	width	of	the	peak,	that	is	
within	an	angle	l/3w	from	the	axis	of	the	incoming	beam.		The	contribution	of	the	center	
peak	to	the	transverse	momentum	average	is	then	0.9l/3w	times	the	momentum,	h/l,	of	
the	photon.		I	have	assumed	that	90%	of	the	photons	fall	in	the	center	peak.	The	remaining	
peaks	fall	very	rapidly	in	intensity	as	they	go	out	from	the	axis.	For	instance	the	second	
peak	is	4%	of	the	main	peak	and	the	next	peak	is	1.6%.		So,	I	will	take	the	remaining	10%	of	
the	photons	and	put	them	out	at	an	angle	which	is	three	times	the	angle	of	the	first	
minimum.		Their	contribution	to	the	transverse	momentum	therefore	is		0.1×3l/w	times	
the	momentum	of	the	incoming	photon.		Adding		all	this	together	we	get;	
	
Dx=	w/4				Dp=	(0.9/3	+0.1×3)l/w×h/l	=	0.6h/w		so:	
	
Dx×Dp	=	.15h	@	h/2p,		which	is	the	Heisenberg	uncertainty	principle.	
	
I	know,	you	think	I	cheated,	but	what	would	you	use	for	numbers?	As	an	exercise	you	might	
analyze	the	diffraction	through	a	circular	aperture	and	see	what	you	get	in	an	analysis	like	
this	one.	
A	couple	of	things	to	note.		When	thinking	about	light	traveling	as	a	bunch	of	photons,	they	
travel	through	the	slit	without	interacting	with	the	slit.	You	could	say	that	merely	the	
knowledge	that	the	photons	went	through	the	slit	is	enough	to	create	uncertainty	in	their	
transverse	momentum.		It’s	probably	best	to	think	of	light	traveling	as	a	wave	and	
interacting	as	a	particle.		The	other	thing	is	that	we	just	showed	that	the	uncertainty	
principle	for	photons	could’ve	been	done	in	1905	when	Einstein	said	that	light	acted	both	
as	a	wave	and		a	particle.	It	wasn’t	until	22	years	later	that	Heisenberg	came	up	with	the	
uncertainty	principle.	Maybe	what	was	required	was	that		de	Broglie		postulated	that	even	
massive	particles	travel	as	a	wave.	He	postulated	this	in	1924,	again	about	20	years	after	
Einstein.		de	Broglie	said	that	massive	particles	have	a	wavelength	which	is	equal	to	
Planck’s	constant	divided	by	their	momentum,	l	=	h/p,	the	same	as	for	a	photon.	
	
	



Compared	to	visible	photons,	this	wavelength	is	very	short.	For	instance	visible	photons	
have	an	energy	of	about	0.5	electron	volts	.	Let’s	compare	that	to	the	wavelength	of	a	“slow	
moving”	electron,	one	which	is	going	1/100	the	speed	of	light.	The	rest	mass	energy	of	an	
electron	is	0.5	million	electron	volts.	
	
For	a	visible	photon		l	=	h/p	=	hc/E	=	hc/0.5ev	
	
For	this	slow	moving	electron		l	=	h/p	=	h/mv	=	h𝑐(/m𝑐(×v	=	hc/0.5Mev(c/v)	=	hc/5000ev	
	
So,	this	electron	has		a	wavelength	which	is	10000	times	shorter	than	the	visible	photon,	
unnoticed	in	everyday	life.		How	about	the	uncertainty	principal	for	these	massive	particles	
like	the	electron?		Well,	same	as	the	photon.		Basically,	if	something	travels	as	a		wave,	it		
cannot	be	localized	unless	it’s	a	wave	packet.	But	a	wave	packet	is	the	addition	of	waves	of	
different	wavelength	and	in	this	case,	different	momenta.		The	wider	the	spread	in	the	
momenta,	the	more	the	wave	packet	can	be	localized,	that	is,		the	more	the	uncertainty	in	
momentum,	the	smaller	the	uncertainty	in	position.	
In	1927,	experiments	of	firing	electrons	through	crystals	and	metal	foils	gave	a	diffraction	
pattern	just	as	de	Broglie	predicted.		But,	again,	Einstein	was	20	years	ahead	of	all	this.		He	
was	putting	the	finishing	touches	on	General	Relativity	when	others	were	generalizing	his	
photon	idea	of	1905.		
We	seem	to	of	come	full	circle.	Our	initial	assumption	was	that	waves	(light)	can	travel	on	
any	and	all	paths	and	then	interfere	to	give	the	net	result.		Does	that	mean	that	particles	
like	electrons,	which	travel	as	waves,	can	travel	on	all	paths,	and	then	these	paths	interfere	
to	give	the	net	result?	Of	course,	that’s	how	the	photons	can	make	the	diffraction	pattern.	It	
seems	like	we	are	back	to	Feynman’s	summing	over	paths,	which	is	where	we	started.	
	
	
OK,	that	is	our	tour	through	optics.		We	could	probably	go	further	
but	I	think	we’ve	done	enough.	If	you	have	comments	or	corrections	
please	send	them	to	optics	@	virgilelings.com	
	
	
	


