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              Simple Special and General Relativity  
             Virgil Elings  

 
My introduction to special relativity was as an undergraduate engineering student.   We were 
told that the speed of light was constant for all observers traveling at different velocities with 
respect to one another and then spent the rest of our time manipulating Lorentz transformations. 
Due to a combination of bad teaching and bad learning, I thought that moving clocks ran slow 
because it took time for the information to get back to the observer.  Of course, this idea was 
wrong, but it was what I was left with. I will try to stay away from manipulating formulas but try 
to derive things as we go along (learning by thinking, I call it). I will try to do almost everything in 
special and general relativity using time dilation and length contraction.  The aim is to get a good 
feel for relativity, without the complexity of tensors and all that fancy stuff the experts use. The 
serious reader needs to get out a pen and pencil and fill in some of the math I have left out. 
 
Einstein's assumptions for special relativity were that in systems traveling with constant velocity 
with respect to each other (no acceleration), they are equal and the physics inside each of the 
systems is the same. He assumed that the speed of light in free space, with respect all observers, 
is a constant. This assumption was not well received because it really screws up space and time.   
This assumption came from Maxwell’s equations in which one solution showed a traveling 
electromagnetic wave traveling at a velocity which seemed to be close to that of the speed of 
light, but it didn’t say in what system this speed was measured. There were also experiments 
which showed that the velocity of light from a star was the same whether you were traveling, in 
the earth orbit, toward the star or away from the star.  
General relativity is complicated. We will see how far we can get using what we learn in special 
relativity. 
Other than some classical mechanics, everything will be done using only these assumptions.  
Relativity is not my field and so I’m afraid there’s a lot of approaches that I haven’t looked at and 
don’t know about.  
 
Special relativity 
Let's start with the standard optical clock. This clock consists of an emitter/detector which emits 
pulses which go up to a mirror, spaced a distance L from the emitter, and then back down to the 
emitter/ detector where a new pulse is sent out, making one tick of the clock. There is an identical 
clock which is moving off to the right at a velocity V in another reference frame, which we will 
call the primed frame.  So why the mirror? It turns out in relativity if you're going to measure a 
time interval, it is best to measure the start and end of the interval at the same place in whatever 
reference frame you are in. Time and space get mixed up so it is better if you can keep space out 
of it. We will see an example of this shortly. 
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       Dt = 2L/c 
 
 
What we want to calculate is the ratio of the time interval in the primed frame, as seen by an 
observer in the stationary frame, to the time interval in the stationary frame for one “tick” of the 
clocks. Now the velocity of light, c, is the same, 3x10. m/sec, in both systems whether the system 
is moving with a velocity to the right or not.  In our stationary system, one tick is just 2L divided 
by c.  In the primed frame one tick is clearly going to be longer because the path is now longer 
than 2L.  During the time interval D t’ (one tick of the moving clock) the detector has moved a 

distance V×Dt¢. The distance the pulse must travel is, therefore, 2/𝐿# + (𝑉×D𝑡(/2)¢#.  

 So,	D𝑡( = 2!𝐿# + (𝑉×D𝑡(/2)#/c.  With Dt = 2L/c, we get: 

     Dt’ = g×Dt  
 where g = 1/!1 − 𝑉#/𝑐#	  a parameter greater than or equal to 1. In our everyday world 
where velocities are not much greater than a few hundred meters per second, this parameter is 
essentially 1 and so we rarely see any of this time dilation (GPS is the glaring exception-more on 
this later). If V> 𝑐,	then the clock (and time) does not work anymore so the restriction is that 
 V ≤ 𝑐. 
 
The takeaway from this is that the clock in the primed (moving) system is ticking slower than the 
stationary clock;  Moving clocks run slow!  time is slower in the moving system.  By 
the way, if we were in the primed frame looking at the clock in the unprimed system, we would 
see it running slow by the same factor. Clocks moving by us run slower than our clock.  Now 
Einstein said that without acceleration or gravity, these reference frames are equal. So, who is 
moving? The other guy, of course. 
 Back in my deep dark past I was part of an experiment at the Berkeley Bevatron to measure the 
lifetimes of the pi plus and pi minus mesons.  If we could find a difference in the lifetimes, it 
would mean that a fundamental theory, CPT, was violated and therefore it would be a big deal. 
Alas (for us, but not for physics), we measured the lifetimes to be equal.   The point of all this is 
that the pi mesons, which have an average lifetime at rest of 2.6×108.sec, travelling at the speed 
of light, without relativity, would only travel about 8 m on the average. But our spectrometer was 
about 30 m in length over which we measured the decay of the mesons.   They were living about 

V×Dt’ 
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twice their “at rest” lifetime as they moved through the lab.  Why? Moving clocks run slow and 
in our case the clock was the meson’s lifetime and g was about 2. 
 
 Now let’s say that a particular pi meson decays halfway down the spectrometer.  People in the 
lab frame and the meson in the meson’s frame both agree where this happens, halfway down 
the spectrometer.   But in the meson’s frame it’s clock is not running slow and therefore the 
lifetime is the at-rest lifetime.  In this case the meson, at best, can only see 8 m of spectrometer 
go by before it decays. How did it get to the 16 meter mark?  The 16 meter mark in the lab frame 
is only 8 meters in the meson’s at rest frame. From the meson’s point of view, the spectrometer 
is contracted by about a factor of 2 so that in the meson’s normal at-rest lifetime, half of the 
spectrometer passes by.   Objects in a reference frame moving by a stationary observer are length 
contracted in the direction of motion by g i.e. L’= L/g.  This length contraction is only along the 
direction of motion.  There is no transverse length contraction, as opposed to time dilation which 
occurs everywhere equally in the moving frame.  So, the meson sees a distorted moving space 
where dimensions along the direction of the moving lab are contracted but the transverse 
dimensions are not. Time dilation and length contraction go hand-in-hand and the magnitude of 
both relativistic effects is the same. 
 
With this length contraction idea, let’s go back and revisit our optical clock, but this time we will 
lay it along the X axis, the direction of motion, so that the pulses travels along the X axis. What 
we want to show is that length contraction is required in order to make the clock work properly. 
One might think offhand that, due to the length contraction of the clock, it will actually take less 
time for the pulses to go to the mirror and back than it does in the stationary frame and time 
would run faster in the moving frame. If that is true, we are in deep trouble.  The rate time passes 
in the primed frame should not depend on the orientation of our clock.  
 

 
 
 
 
  Let’s break the round-trip of the path, as seen by the stationary observer, into two parts. The 
first part being from the emitter/detector to the mirror (time t1’) and the second part from the 
mirror back to the emitter/detector (t2’).  In the first part the mirror is moving away from the 
pulse, which is travelling at velocity c, so the distance traveled is (L/g + V×t1’ ) = t1’×c, where the 
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length of the clock has been length contracted to L/g. We solve for t1’ and get t1’ = L/(g×(c – V)).  
In the second part the emitter/detector is moving toward the pulse and so the distance traveled 
is (L/g - V×t2’) = t2’×c and so we get t2’ = L/(g×(c + V)).  The total time for one tick of the moving 
clock is t1’ + t2’ which is 2L/(gc×(1 -	𝑉#/𝑐#)) = 2Lg/c.  The time for one tick of the stationary clock 
is 2L/c and so the clock in the moving frame, as seen from the stationary frame, is still running 
slow by the factor g. Things are OK, but we get the correct answer only because the moving clock 
was length contracted in the direction of motion. In the stationary frame the times t1 and t2 are 
identical, so the time between two events, spaced apart along the x-axis, are different as seen by 
the two frames.   Even events that are simultaneous in one frame will not be simultaneous as 
seen in the other frame.  Here is a simple example. Let’s say we synchronize two clocks in the 
primed (moving) frame, spaced a distance L apart, by placing a pulse emitter halfway between 
the clocks and sending out pulses of light which start the clocks running when the pulses arrive.  
In the primed frame the clocks are now synchronized. As seen from the stationary frame, the left 
clock is running into the pulse and therefore gets set before the right clock, which is moving away 
from the pulse, and so the left clock measures time which is ahead of the right clock as seen from 
the stationary frame. If we calculate how much it is ahead, it involves the same calculation we 
did for our clock which was laying down.  
 
Lorentz Transformations 
(I said I was going to stay away from this but some think it is needed) 
  Again, we consider two reference frames, one the primed frame moving with a velocity V to 
the right of the stationary frame.  We have a point in the stationary frame with coordinates X and 
t and we now want to calculate the coordinates X’ and t’ in the primed frame. At time zero, all 
clocks are synchronized in each of the respective frames and set to zero and the origins of both 
coordinate systems are superimposed. 
 Length Contraction  First we will derive the Lorentz transformations, for transforming the 
space and time coordinates from a stationary frame to a moving frame, by simply using only 
length contraction.   Classically we have, as seen from the stationary frame, X’ = X – Vt.   With 
relativity, the moving frame is length contracted and, therefore, we see, from the stationary 
frame, that X’ is now X’/g . So, X’ = g(X – Vt), and looking from the primed frame  we see an equal 
relation, X = g(X’ + Vt’), except that V is now in the other direction.  Eliminating X’ between these 
relations we get; t’ = g(t - X×V/𝑐#)  and, similarly, t = g(t’ + X’×V/𝑐#) .  The term X×V/𝑐#means 
that the time on the X’ axis, as seen from the stationary frame, depends on the position in the 
stationary frame. Therefore, the Lorenz transformation for transferring the coordinates in one 
frame to a moving frame are the following. 
                             X’ = g(X – Vt)        and t’ = g(t - X×V/𝑐#)        
                             X = g(X’ + Vt)      and   t = g(t’ + X’×V/𝑐#) 
                             Y’ = Y 
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  Time Dilation    We will now derive the Lorentz transformations using only time dilation.  
We already found that it’s dangerous to compare the time measured on two clocks in the moving 
frame that are separated in space, so we will use only one clock in the moving frame. The clocks 
in the stationary frame all read the same time.  
 
Consider a clock at the origin of the moving frame and count the time on this clock, as viewed 
from the stationary frame, from time zero until the Y’ axis of the moving frame is coincident with 
the point of interest, X,t.  We have, t’ = t/g (the moving clock is running slow).  
  Multiplying the top and bottom by g, we get: 
 
     t’= g/g#×t = gt×(1 - 𝑉#/𝑐#)  but, t = X/V (V = X/t) so:  t’ = g(t - X×V/𝑐#) 
 
As before, the rest of the transformations follow from this. The Lorentz transformations can be 
derived from either length contraction or time dilation.   A big difference is that length 
contraction is directional and time dilation is not.   In general relativity, we will see that we have 
to use both to get the right answers, and the directional aspect of length contraction will be a big 
deal. 
Velocity Addition 
We now will calculate how to add velocities in relativity. We will do this two ways, one by 
thinking, and one using the Lorenz transformations.   Let’s do thinking first.  
Consider a particle moving in the primed frame with a velocity U’ and with the frame moving with 
a velocity V in the X direction. What we want to calculate is the velocity U of the particle in the 
stationary frame ie. we want to add U’ and V to get U.  This velocity U must satisfy several 
boundary conditions. Two are that when U’ or V increases to the velocity of light(c), U also goes 
to c and cannot go above it. Also, if U’ and V are very small compared to the velocity of light, we 
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should get the classical result, which is just U’ + V. Whatever relation we derive, it must be 
symmetrical in U’ and V.  
             y         y’ 
      
 
 
                                           V                                        
 
 
 
 
 
Consider first only the x component of U’, the component in the direction of V.   In the low velocity 
case we have: 
                 𝑈: = 𝑈′:+V,  but as V Þ c     𝑈: = a×(𝑈′: + 𝑐) Þ c where  a is some factor.  
a therefore must have a form something like c/(𝑈′: + 𝑐) but similarly must have the form  
c/(V+ c) when 𝑈′:Þc.   To include all these conditions and the symmetry between U and V, we 
wind up with a= c/(c + V×𝑈′:/𝑐) =	1/(1 + V×𝑈′:/𝑐#). 
 
 So:  𝑈:  =( 𝑈′:+V) /(1+V×𝑈′:/𝑐#)  Þc when V,	𝑈′: Þc  and Þ𝑈′:+V when V/c Þ0 
 
Another way to find 𝑈: is to calculate dX/dt from the two Lorentz transformations; X = g(X’ + Vt’) 
and   t = g(t’ + X’×V/𝑐# )    dX/dt = g(dX’+Vdt’)/g(dt’+dX’V/𝑐#) 
Dividing by dt’ top and bottom we get, as before 
 
                   dX/dt = 𝑈:	= ( 𝑈′:+ V) / (1 + V×𝑈′:/𝑐#).   
 
 Now consider the Y component of U. You might assume that the velocity in the Y direction should 
not be affected by a transformation between two coordinate systems which have a relative 
velocity in the X direction. Let’s see how that works out.  Consider a particle travelling only along 
the Y‘ axis. When transformed to the stationary system, we will assume the Y velocity to be 

unchanged and the X velocity will just be V (𝑈′:=0).   The resultant velocity will be /𝑈′<	# + 𝑉#.  

Well, you can see the problem.   As V Þ c, this resultant velocity is clearly going to be larger than 
the velocity of light, and that is a not allowed.  𝑈<  must go to 0 as V⇒ c. The Y velocity measured 
in the stationary frame, 𝑈< , must be smaller than the Y’ velocity measured in the primed frame, 
𝑈<( , to avoid this problem.  Let’s take 𝑈<  to be k×𝑈′<  and see if we can figure out k.  We have 

U=/(k×𝑈′<)	# + 𝑉#.   If this is to be c as V goes to c, we have 𝑈# = k#×𝑈′<	# + 𝑐# = 𝑐#.  So k must 

go to zero as V goes to c. Let 𝑈′<  go to c and the result must be the same.  k#𝑐	# + 𝑉# = 𝑐#.  Or: 
k#= 1 - 𝑉#/𝑐# = 1/g#.  So, 𝜅 = 1/ g. Now if time were running slower in the primed frame, by the 
factor g ,that is, t’ = t/g, then dY/dt would be slower than dY’/dt’ (velocity is inverse time).  But, 

 

U’ 

𝑈′<  

𝑈′: 
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we already knew that time runs slower in the moving frame. So, you can derive time dilation, and 
therefore all the Lorentz transformations, by only insisting  that things not go faster than the 
speed of light. 
 
Conservation of Momentum 
So far, special relativity has made a mess out of space and time.  Let’s see if we can save Newton’s 
most famous law of motion, action equals reaction, also known as conservation of momentum.  
Some people feel that F = ma is his most famous law of motion but, to me, it is just the definition 
of force, and besides, the force is measured in Newtons! We will find that unless we do something 
with mass, momentum is not conserved because of our new velocity addition rule. 
 Consider the collision of two particles of mass m and velocity V travelling in opposite directions, 
colliding, and then going off at 90° with velocity V. In this frame, momentum is conserved because 
both the X and Y components of momentum are zero both before and after the collision.  Call 
this the primed frame. We now let this frame move to the right with velocity V and observe the 
collision in a stationary frame.  Is momentum still conserved?   
 
 
                          V 
 
 
           V                   V                                                   2V                                               x’             
                                                             V   
 
 
                           V 
 
 
 
Let’s consider the classical case first. In this case we have a particle moving with the velocity 2V 
striking a stationary particle and then the particles go off at a 45 ° angle with each particle having 
an X component of velocity V. We have an incoming X momentum of 2V×m and outgoing 
momentum of mV×2.  The total Y momentum is still zero, and so classically momentum is 
conserved in the collision. Let’s now use our velocity addition formula to see what relativity thinks 
of this.  The incoming velocity is not 2V but rather 2V/(1+𝑉#/𝑐#)  which is less than 2.  The X 
component of momentum after the collision is still 2×mV, and so momentum is NOT conserved. 
To make this work we need to have the mass of the incoming particle be larger than either of the 
masses of the 2 outgoing particles.   The likely suspect is, of course, to multiply the rest mass of 
the particles by g so that particles with a higher velocity would have a larger mass. This would 
also be convenient because it would mean that the transverse, (Y), momentum would stay 
constant when we transform between the moving frame and the stationary frame, the larger 
mass making up for the smaller transverse velocity.  If you do this fudge to the mass of all the 
mass’s  by multiplying the rest masses by g, then you’ll find out, if you do the algebra, that in this 

    

Y’ 
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example the momentum is conserved. Try not to make any mistakes because the algebra is sort 
of a mess. And be sure that the mass fudge factor involves the TOTAL velocity of the particle. 
We now want to show, with our correction to the mass, that we can create mass from energy. 
 
          
 
 
 
    Let’s take a simpler example, an inelastic collision where we have two particles of rest mass 
𝑚@travelling with equal and opposite velocities V, colliding with each other and sticking together, 
making a rest mass 2·𝑚#.   We call the masses different, because they may be different. 
Momentum is conserved in this frame because both the X and Y total momentum are zero before 
and after the collision. Let’s again move this frame off to the right with a velocity V so that in a 
stationary frame we now have only one particle moving with a velocity given by relativity of 
2V/(1+𝑉#/𝑐#) which we call 𝑉AB .  After the collision, we have a particle of mass 2·𝑚#	moving to 
the right with a velocity V.  Conserving momentum, we have.  

       2∙ 𝑚@·𝑉AB//1 − 𝑉AB#/𝑐	#	=	2𝑚# ∙ 𝑉/√1 − 𝑉#/𝑐	# 
 You can do the algebra (there’s a lot of cancellation) and what you end up with is that the rest 
mass 𝑚# is NOT equal to the rest mass 𝑚@ but rather: 

                   𝑚# = 𝑚@/√1 − 𝑉#/𝑐	#   this is the REST MASS of 𝑚#, not the moving mass! 
We now have a problem. We either give up our idea of conservation of momentum or we need 
to do something about this thing we call mass(again!). We will stick with conservation of 
momentum. 
Classically the loss in kinetic energy goes into heat of the final particles that are stuck together. 
Let’s see what this has to do with the increase in rest mass.   In the stationary system the kinetic 
energy before the collision is 1/2 𝑚 ∙ (2	𝑉)# and after the collision is  2∙ 1/2𝑚𝑉# so the loss in 
kinetic energy in the collision is, classically,  1/2 𝑚 ∙ (2	𝑉)# −	2∙ 1/2𝑚𝑉# = m𝑉# since the input 
and output masses are the same.  
To first order in 𝑉#/𝑐# we have,  from above, 2𝑚# = 2𝑚@(1 + 1/2(𝑉#/𝑐#)) = 2𝑚@ +
	𝑚@𝑉#/𝑐#,  or in English; the outgoing particles (which are stuck together) have a total rest mass 
	equal to the two incoming particle’s rest mass + the loss in kinetic energy in the collision divided 
by 𝑐#. This collision has turned kinetic energy into mass!  Let’s see what it looks 
like in the moving frame where it is easier to analyze things. Here we have two particles headed 
toward each other with the kinetic Energy of 1/2∙ 𝑚𝑉#. The final kinetic energy is zero. If this is 
turned into mass, then we get an increase in the rest mass/𝑐# of 𝑚𝑉#, the same as see from the 
stationary frame. 
We need to be careful. We may be adding apples and oranges. We combined “mass is energy”, 
a relativistic concept, with kinetic energy, a Newtonian concept.   It looks like the fudge factor 
gamma which we multiplied the mass with to make conservation of momentum work, may be a 
way to include in the mass, it’s energy of motion.  Rest energy (𝑚𝑐#)+ energy of motion = 𝛾𝑚𝑐# =

2𝑚# 𝑚@ 𝑚@ 
V V V 
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𝐸. This certainly works where V/c is much less than one.  We get E= 𝛾𝑚𝑐# ≅	(1+ 1/2×𝑉#/𝑐#)	𝑚𝑐#  
= 𝑚𝑐#+1/2×𝑚𝑉#. It also works at higher velocities. 
With total energy E =  𝛾𝑚𝑐# and momentum,  P = 𝛾𝑚V, we have that E = P𝑐#/V.  For a particle 
travelling at the speed of light (a photon) this gives E = Pc.  In the limit of V going to 0 (P=mV), we 
have E = 𝑚𝑐#, the rest energy. Everything is consistent. 
 
Work, energy and conservation of energy 
  We can derive this mass-energy relationship by using the age-old concept of work (force times 
distance) equals the increase in energy. We have dE = Fdx = dP/dt∙ 𝑑𝑥 =	dP/dV∙ 𝑉𝑑𝑉.  
Integrating from 0 to V we have: 

            Change in Energy = ∆E =  ∫ 𝑑𝑃/𝑑𝑉 ∙ 𝑉𝑑𝑉L
M .  

 The difference with relativity is that P involves 𝛾 and so the integral becomes more involved. You 
can convince yourself that dP/dV is just 𝛾N	𝑚 and that the integral, then, is  𝛾𝑚𝑐#] LM =  𝛾𝑚𝑐# - 

m𝑐#.  The increase in energy from rest to velocity V is the total energy 
(𝛾𝑚𝑐#) minus the rest energy (m𝑐#) . 
Since energy is now mass, then our concept of conservation of energy is the conservation of 
total mass, 𝛾𝑚𝑐#.   Let’s try this in our inelastic collision example. In the moving frame, the total 
mass before the collision is just 2𝛾𝑚 and therefore that is the mass after the collision, which is 
just the rest mass of the final particles stuck together.   This is the same answer we got when we 
used conservation of momentum.   
Are there other examples of turning energy into mass? Of course, that’s what they do at particle 
accelerators. I mentioned before the measurement of 𝜋Q and 𝜋8 meson lifetimes. But if you 
want to measure those lifetimes, first you need to make the mesons. This is done with a proton-
proton inelastic collision, p+p ⟹		p + p +	𝜋Q + 𝜋8, where the first proton comes out of a proton 
accelerator and the second proton is stationary in a liquid hydrogen target.  In the center of mass 
system, it is clear that the threshhold kinetic energy of each proton must be such to create the 
rest energy of one pi meson, about 135 Mev (million electron volts).  So, in the center of mass 
we have 𝛾𝑚S	 = 	𝑚S	 + 𝑚T	for each proton. Transforming to the laboratory frame where one 
of the protons is stationary, using our velocity transformation formula, we get that the total 
energy of the proton from the accelerator is E = 𝛾′𝑚S = 𝑚S+4𝑚T+2𝑚T

#/𝑚S.  The kinetic energy 
required, 4𝑚T+ 2𝑚T

#/𝑚S, is over twice that needed in the center of mass frame.  Not very 
efficient.   If we were making a proton- antiproton pair, each with a rest energy of 1000 Mev, 
instead of a pi meson pair in the collision, then the kinetic energy required in the lab frame would 
be three times that required in the center of mass. This ratio gets bigger the larger the masses 
that are created in the collision. 
 In order to create more massive exotic particles, the problem was solved by making the center 
of mass frame and the lab frame the same using colliding beam accelerators. The first proton 
colliding beam accelerator was the Intersecting Storage Rings (ISR) built in Geneva in 1971.  This 
machine stored protons from a synchrotron into two counter-rotating beams and then steered 
them with magnets to collide with each other, making the lab frame the center of mass frame.   
The current (2018) most powerful colliding beam accelerator is the large hadron collider (LHC), 
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also at the CERN lab in Geneva. This machine has two counter rotating beams each with kinetic 
energy of 6.5 TeV, yes, that is with a T.   This accelerator is huge and has a diameter of 27 km. 
Yes, that’s kilometers. This accelerator was used to confirm the existence of the famous Higgs 
boson which was found to have a mass of 125 GEV, about 125 times the mass of each of the 
colliding protons. 
 We’ve shown how mass can be created with kinetic energy, so how about the reverse where we 
create kinetic energy from mass.  Well, it happens every day in your (non-electric) automobile. 
In this case carbon and oxygen combine to make C𝑂# plus 4.1 eV of energy.   The reactants 
contain a total of 44 nuclei which have a total rest energy of about 44 billion electron volts.   It 
would take a very good scale to notice that 4.1 eV of rest energy is missing in the final product. 
This reaction doesn’t convert much of the rest energy into kinetic energy.  These atomic reactions 
involve energies of the order of electron volts, the binding energy of electrons in atoms. Nuclear 
reactions, on the other hand, involve energies of millions of electron volts, the binding energy of 
nucleons in the nucleus.  The method would be to take one or more nuclei with a small binding 
energy and somehow convert them into one or more nuclei that have a much higher binding 
energy.  This binding energy might be thought of as a negative energy. If two things bind together 
then it takes energy to separate them so, therefore, when they bind together, they give off kinetic 
energy equal to the binding energy.   From the diagram below we see that the most tightly bound 
nuclei are the iron group and so we could create kinetic energy by taking something very heavy, 
like uranium, and splitting it to make smaller nuclei or, we could take very light nuclei like 
hydrogen and deuterium and fuse them together to make heavier nuclei like helium. The first is 
easier to do but unfortunately some of the products in the fission reaction are very radioactive 
and last for tens of decades. The second fusion process is very hard to do because you need to 
get the light nuclei up to a high enough temperature so that their kinetic energy can overcome 
the repulsive Coulomb force between the positively charged nuclei, so they can react. This is 
usually done by containing the particles in a magnetic field. I worked one summer at the Oak 
Ridge National Laboratory and had a chance to tour the fusion facility. They told me that they 
were just turning the corner to success. It sounded impressive. The problem is, that was 1961.  It 
has been a big corner but progress is still being made. 
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This brings special relativity to an end. Let's see what we have learned based on just two bold 
assumptions, one that the speed of light is the same for all observers and two, that reference 
frames travelling at a constant velocity with respect one another are equal. 

1.  Clocks moving with respect to us run slow 

2.  Objects moving with respect to us are length contracted but only 
in the direction of their motion. 

3.  Velocities don’t add as easily as they used to. 

4. Momentum can only be conserved if mass increases as a function 
of velocity. 

5. The mass of a body contains both its rest energy and kinetic 
energy. 

6.  Conservation of energy is conservation of mass. 
7.  Energy can be turned into mass. 
8.  Mass can be turned into energy. 

 
Quite a bit from simple assumptions. If this all seems strange, stranger things are yet to come. 
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General relativity 
OK, I’ll be honest, I don’t know much more about the formalism of general relativity than the 
man on the street, which is essentially next to nothing. It looks like a difficult subject, and so I’m 
going to stay away from the guts of general relativity.  We have come pretty far so far, and it 
would be a shame to give up now. What we are going to do is to use what we learned about 
special relativity, along with an analysis of free fall, and see how far we can get. The object is to 
see if we can derive some of the predictions made by general relativity. The point of the freefall 
analysis is that it creates a coordinate system where there is no gravity, by canceling the gravity 
with acceleration, much as in an orbiting satellite. From this free- fall system, using special 
relativity, one can analyze other coordinate systems, even ones that have gravity. From that 
frame we can analyze other frames which do have gravity so that we can reproduce some of 
Einstein’s most famous calculations. 
For our simple relativity, we are going to replace gravity with acceleration. Actually, this is not 
exactly a new concept. In classical mechanics, we go into a rotating coordinate system, such as a 
merry-go-round, and then replace what was centripetal acceleration in the stationary frame with 
a mystical force called centrifugal force in the opposite direction. Acceleration replaced with a 
force. For our simple gravity, we are going to replace a force with acceleration. 
The question is, does gravity affect time and distance like velocity does in special relativity? Our 
approach to general relativity is going to be quite simple so that even I can understand it. Our 
approach is robust enough that we can reproduce some of Einstein’s most famous calculations.  
Our approach avoids a lot of the formalism in general relativity and so, therefore, our approach 
is not the end all, but is simple enough that we can get a good feel for general relativity 
 
 

The bending of light by gravity 
First a classical calculation 
Before we get into the relativity calculation, let’s calculate classically the deflection of a massive 
particle, travelling at the speed of light, passing near the surface of the sun. This is a classical 
calculation, so a particle travelling at the speed of light is OK.  This is a calculation that could’ve 
been made by Newton, because he thought light was a particle, but apparently, he never made 
it.   Consider the imaginary gravitational field shown below which is directed toward the left. As 
a particle passes through this field, the angle of deflection, for small angles, is simply the amount 
of horizontal momentum given to the particle by the gravitational force, divided by the total 
momentum of the particle. 𝜃 = ∆𝑃!/P where ∆𝑃! is the change in transverse momentum. 
    
 
 
 
 
 
 
 

∓
∓ 𝜃 
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We will now calculate this deflection for a particle passing close to the surface of the sun at a 
distance 𝑟"	from its center.  Since the deflection is small, there is no reason to worry about the 
shape of the path. We will use just a straight path and calculate the horizontal momentum given 
to the particle. You can pretend the deflection is there, but it’s so small you can’t see it in the 
diagram.   We integrate half the path. 
 
                                                           
 
                                                      Δ𝑃! = ∫ 𝑑𝑃"

#  = ∫ 𝑑𝑃/𝑑𝑡 ∙ 𝑑𝑡/𝑑𝑥 ∙ 𝑑𝑥"
#  = ∫ 𝐹!

"
# /c·dx 

                                                      𝐹!  = mMG/𝑟$	·cos 𝜃 where cos 𝜃 = 𝑟#	/𝑟	 
                                      and r = -𝑥$ + 𝑟#$ 
                                                                 m is the mass of the particle, M is the mass of 

                                                 the sun and G is the gravitational constant. 
  

 ∆𝑃!/P = mMG/m𝑐$ · ∫ 𝑟#
"
# /𝑟& ∙ 𝑑𝑥     

 =     MG/𝑐$ ∫ 𝑟#/
"
# -𝑥$ + 𝑟#$

!/#
 = MG/𝑟#𝑐$ 

         We must multiply by 2 since we only integrated half of the 
         path, so the total deflection is 2𝜃 =	2MG/𝑟#𝑐$ 

  
      The product 2MG/𝑐$ is called the Swartzchild radius, 𝑟', and has dimensions of 
length. 
It will come up again and again.  The deflection, then, is 𝑟$/𝑟"	, a dimensionless number.   This 
angle, which is only 0.87 arc seconds, or about 4∙ 10%& radians, is half the correct angle for 
deflection of light by the sun.  So, we need to do better. 
 
 

GRAVITY 

									𝑟" 

x 

r 

 

q 



 3 

A word of caution 
Given the parameters at hand; the mass of the sun M, the gravitational constant G, the radius 
of the sun 𝑟" , and the speed of light c, we need to construct a dimensionless parameter, 
because the angle of deflection is dimensionless.   The only dimensionless parameter that you 
can create is MG/𝑟"𝑐', or powers of it. So, no matter what your theory, if you keep track of 
units, you are going to get “something” times this parameter.  The important point is, what is 
the “something”?  That is the calculation. 
 
Einstein’s first calculation of the bending of light - the dropping of a 
photon 
Einstein’s first idea for the bending of light by gravity was in 1911 and the idea was to give the 
photon a mass and then see how this would affect the bending of light. From special relativity, 
we know that energy is equal to mass and so we can set the mass equal to E/𝑐'.  The easy way 
out in the above calculation would be to replace the mass of the particle with E/𝑐' and replace 
the momentum P with E/c. 
 ∆𝑃!/P = E/𝑐$MG/E· ∫ 𝑟#

"
# /𝑟& ∙ 𝑑𝑥    = MG/𝑐$ · ∫ 𝑟#

"
# /𝑟& ∙ 𝑑𝑥 = MG/𝑟#𝑐$    

The energy cancels out and you, of course, get the same answer as the classical calculation.  
 But Einstein took a different approach.  He took the energy of the photon to be hf (why not, he 
discovered that) where h is Plank’s constant and f is the frequency of the photon, and the mass 
therefore is m= E/𝑐$ = hf/𝑐$.  As the photon falls in the gravitational field, the energy would 
increase and therefore the frequency would increase. Since the speed of light is constant, this 
means that the wavelength would decrease.   If the frequency is 𝑓"	at infinity then, as the photon 
falls, we get: 
  E = 𝐸# + mMG/r  = h𝑓#	 + h𝑓#	MG/r𝑐$ = h𝑓#	( 1 + MG/r𝑐$)  where r is the distance to 
the center of the sun. Similarly we have:  𝜆 = 	𝜆#(1 -  MG/r𝑐$)   where we have used, and will 
use a lot, (1 + 𝑥)( = 1 + nx  for x≪ 1	and for all values of n.  Remember, MG/r𝑐' is very small, 
even for r as small as the radius of the sun.  Einstein then used the concept that light travels from 
one point to another on the path of the minimum number of wavelengths and proceeded to 
calculate the angle of bending.  If you have not heard about the path of minimum number of 
wavelengths, let me give you my thoughts and use some crude diagrams 
The assumptions: 
1. Light is a wave  
2.Light can take any and all paths from A to B. 
I am going to blame this second assumption on Richard Feynman, which is where I think I ran 
across it (summing over paths).  Probably, though, it was Huygens several centuries ago. By the 
way, you can do essentially all of optics using only these two assumptions. See the Optics 
section. 
Now people usually think light travels in a straight line, and so what is this business about 
taking any path? But light is a wave and, as you know, two waves out of phase can cancel each 
other, so it may turn out that a lot of these paths cancel each other. 
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                                    Constructive interference 

 
                                         Destructive interference 
 
If we take the long path from A to B, there is a shorter path, shorter by one half a wavelength, 
that cancels that path and so on down until we get to the path of the minimum number of 
wavelengths from A to B.  When we get to that point, the paths can no longer cancel each other 
and around one quarter of a wavelength of the path of minimum wavelengths are the paths on 
which the light travels.  Absent other things, this path will be the shortest distance between A 
and B, a straight line. If the wavelength varies in space, as in this case, then the path will not be 
a straight line. A similar thing happens when light goes through a medium with an index of 
refraction that varies in space and the light does not follow a straight line. Graded index (GRIN) 
lenses work this way. The “slop” in the path of about 1/4 of a wavelength is what causes all of 
the diffraction effects in classical optics. See the Optics section of this website. 
The path is shown below.  The bending is small, so there is no reason to worry about the exact 
shape of the path. We just use two straight lines but integrate over only half the path. 
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We now calculate the average wavelength over the path L’ by integrating over 𝜑 from 0 to π/2, 
with dL’ = r/cos(𝜑 – 𝜃) d𝜑. Remember, 𝜆 = 	𝜆#(1 -  MG/r𝑐$)   
 
             

 𝜆()* =	𝜆# /L′×∫ (1 − 𝑎/𝑟+/$
# )𝑑𝐿′   where a is MG/𝑐$   This gives: 

 
     𝜆()* =	𝜆#	- 	𝜆#𝑎/L’ ∫ 	+/$

# 1/cos(𝜑 – 𝜃)dj =	𝜆#(1- a/L’·ln(tan(𝜑/2 − 𝜃/2	+π/4))+/$#   
 
We need to be careful at the upper limit because the tangent is very large.  For small 𝜃, 
tan(π/2−𝜃/2) is just 2/𝜃.  So, for 𝜆)*+ we get: 
 
     𝜆()* =	𝜆#(1 − 𝑎/𝐿′ · (𝑙𝑛2/𝜃 - ln(tan(π/4−	𝜃/2)) 
 

𝑟" 

𝜃 

L 

r 

L’ 

𝜑 
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The first ln term is large and sensitive to 𝜃 whereas the second ln term is small, essentially ln1, 
which is zero.   Notice that all of the “action” is at the upper limit of the integral. To first order 
we have: 
 
               𝜆()* =	𝜆#(1 − 𝑎·ln(2/𝜃)/L’)              
 
This average wavelength is less than the wavelength far from the sun, 	𝜆",	because the closer we 
get to the sun, the higher the frequency of the photon, therefore the shorter the wavelength. 
Notice that 	𝜆𝑎𝑣𝑔 increases as 𝜃 increases. 
 
We now want to vary 𝜃 to find the value of 𝜃 when the path is the minimum number of 
wavelengths.  This path will favor distances away from the sun because there the average 
wavelength is longer. The number of wavelengths on the path L’ is L’/𝜆)*+.  We minimize this by 
taking the derivative wrt 𝜃 and set it equal to zero. 
 
#𝜆 = L’/𝜆()*  and d#𝜆/d𝜃 = dL’/d𝜃/𝜆()* - 	𝜆#a/𝜃/𝜆()*

$	=	0.		Notice	that	the	2	in	the	
ln	makes	no	difference	in	the	derivative.	
	
Now L’ = L/cos(𝜃) = L(1+𝜃$/2)  so,  dL’/d𝜃	= L𝜃: to first order we can use 	𝜆# for 
𝜆()*  in the denominators	
 
So:  L𝜃 − 𝑎/𝜃 =	0  or, since L𝜃 = 	 𝑟!	, 	𝜃 = a/𝑟! 
 
total deflection = 2𝜃 = 2𝑎/𝑟! = 2 MG/ 𝑟!𝑐#  =  𝑟$/𝑟!	  The Something is 1 
 
Seems like a lot of work to get the same answer, but a step in the right direction. 
No time dilation or length contraction, though. The dropping of a photon was 
basically a shot at time dilation.  The effect is the same but what is really going on 
is that the frequency of the photon is increasing as it drops toward the sun because 
it is entering regions of slower and slower time. The longer the seconds, the more 
cycles per second. This dropping of a photon is used to describe things like the 
gravitational red shift and the rate of clocks that are orbiting the earth. In the red 
shift, many say that the photon loses energy, and therefore gains wavelength, as it 
comes out of the gravitational pull of a distant star where it was created. The real 
explanation is that the photon was created in a region of slow time, that is, in the 
gravitational field of the distant star, and has now entered a region of faster time, 
where we see it. Shorter seconds means lower frequency.  
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Now what about length contraction? If we include that, you can guess where the 
correct answer for the bending of light is going to come from. So, let’s do this thing 
with time dilation and length contraction. 
 
 
Free Fall Toward a Point Source of Gravity 
In special relativity, we dealt with reference frames which we call inertial frames, 
they travelled with constant velocity and had no acceleration.   Einstein wanted to 
include acceleration. 
 One of the results of classical mechanics was that the mass attracted by gravity 
(weight) was exactly the same as the mass involved in collisions, that is, the mass 
involved in acceleration (F=ma, if you will).   Could it be that gravity and acceleration 
are the same thing? It is a little hard to see how gravity, this mystical force from a 
massive body, could be the same as acceleration which has to do with motion.   
They don’t seem to be the same and they are not. It is more complicated than that 
and gravity requires a lot of mathematics to really understand it. What we are going 
to do is see how far our special relativity can get us into general relativity.  
For our simple relativity, we are going to replace gravity with acceleration. Actually, 
this is not exactly a new concept. In classical mechanics, we go into a rotating 
coordinate system, such as a merry-go-round, and then replace what was 
centripetal acceleration in the stationary frame with a mystical force called 
centrifugal force in the opposite direction. Acceleration replaced with a force. For 
our simple gravity, we are going to replace a force with acceleration. 
The question is, does gravity affect time and distance like velocity does in special 
relativity? We are going to analyze a reference frame which has gravity from a 
massive body, like the sun, and then cancel gravity with acceleration so we can 
analyze the frame from the viewpoint of motion. Getting rid of gravity is not that 
hard, it’s done every day in the space station. The occupants accelerate toward the 
earth just the right amount to eliminate the force of gravity. They are in freefall.   
Einstein’s idea was an elevator in freefall, but that was before the space station.   A 
reference frame in freefall is an inertial frame, there is no gravity and no 
acceleration, so we can use special relativity to analyze other frames like the 
“gravity” frame, the frame with gravity in it..  From the standpoint of this freefall 
frame, it is the rest of the world that is accelerating past it, moving faster and faster 
as time goes by. But remember, we have simply replaced gravity with acceleration. 
As the world moves by, we see that three things happen in that world.  



 8 

The first is that if there were a row of clocks stretching to the sun, as the clocks go 
by they are running slow with respect our clock, but the closer the sun gets to us 
(or we get to the sun) the slower they run. Time dilation causes clocks nearer the 
source of gravity (the sun) to run slower.   The second is that if there was a line of 
rulers stretching to the sun, we would notice that the rulers would get shorter and 
shorter the closer we got to the sun due to length contraction.   There is no length 
contraction perpendicular to the direction of motion and therefore space becomes 
warped. We now have that the circumference around the source of gravity is no 
longer two pi times the radius, but is greater than that.   Space is no longer “flat”.   
The third, which is disturbing to me, is that as the sun gets closer and closer to us, 
its’ mass increases because its’ velocity is greater and greater.   If mass is energy, 
where did the energy come from? If we are going to use this approach, though, we 
are stuck with this increase in mass. 
          For V ≪ c, we have  g = 1 + 1/2×𝑉$/𝑐$. 
 The freefall velocity, by the time we get to the surface of the sun (or it gets to us), 
will be equal to the escape velocity from the surface of the sun (freefall run 
backwards) which is about 620 km/sec, 1/500 the speed of light, so we can use the 
approximation that 𝑉$/𝑐$ ≪	1.  Turning gravitational potential energy into kinetic 
energy, our freefall velocity squared, starting with zero at infinity, will be 2MG/r at 
a distance r from the center of the sun.  The relativistic corrections, therefore, to 
time, radial length, and mass of the sun, as seen in the gravitational field are, 
multiplied by g = 1 + 1/2×𝑉$/𝑐$         Relativistic corrections = g = 1+MG/r𝑐$ 
 
                 
          
The distance to the source of gravity, in the gravity frame, is r(g) = r(1-MG/ r𝑐$).	 In 
our examples, r is always much larger than MG/ 𝑐$	, so r is essentially equal to r(g) 
except for a small difference, that is, r(g) = r - MG/𝑐$.The gravity shifts the radial 
axis and this shift does not depend on the radius. How did we get such a strange 
result? The difference does depend on r times a factor which varies inversely as r 
and therefore the effect is a constant, but small, difference between the two radii. 
We will calculate the bending of light in two ways. The first will be to calculate the 
bending in the warped system, the gravity system, where the speed of light is 
constant but time and distance are warped. The second calculation will be to 
calculate in a Newtonian coordinate system where time and distances are not 
warped, but where  the speed of light is not constant. 
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In the first case, we will look at the effect of time dilation with no length 
contraction, and then we will look at the effect of length contraction with no time 
dilation, and then add the results.  You may say that we should multiply the results, 
but for a small effect, multiplying and adding are the same. For a, b, 𝑐 ≪ 1, 
(1+a)×(1+b)/(1+c) @1+a+b-c. 
 In the second case we will calculate how the variation of the speed of light causes 
the wavelength of light to vary (just as in the classical case), and will then calculate 
the bending of the path of minimum number of wavelengths. 
 
 
The warped system 
Time Dilation 
With time dilation, the frequency of the light will be greater as it passes nearer the sun. Since the 
velocity of light is constant, the wavelength of light will be shorter near the sun.  We have:  𝜆 =
	𝜆"(1 -  MG/r𝑐')  where  𝜆" is the wavelength at infinity, just as in the case of dropping a photon.   
The rest of the calculation to find the path of the minimum number of wavelengths is the same 
as what we have already calculated and therefor the answer is that the angle of deflection is; 
        2q = 2MG/𝑟#𝑐$ = 𝑟'/𝑟#	,  deflection caused by time dilation 
 
 
 
Length Contraction 
 Our distant observer now sees dimensions near the sun to be distorted somewhat like the map 
of the northern hemisphere shown on a flat page. Let’s say you had such a map with distorted 
grid of lines 100 km apart and were asked to calculate the shortest path in km from say Paris to 
New York.  You would calculate, in your flat world, a curved path which favors the northern 
latitudes where the kilometers in the distorted grid are quite large. Using the dimensions 
distorted by gravity, we want to calculate the path of minimum length (distance), which is the 
path that light will take (more on that later). This path will not be a straight line, somewhat like 
the curved airline routes shown on a flat map of the northern hemisphere. This calculation will 
be like our time dilation integral, calculating the path of the minimum number of wavelengths, 
except with one difference, only the radial dimensions are distorted, not the tangential 
dimensions.  The bending is quite small and so we choose the “curved” path to be two straight 
lines as shown in the previous figure with only q as a variable.  
 Consider a meter stick laying along L’.   The radial component of this meter stick is 𝑚"×sin(j-q) 
and the tangential component is	𝑚"×cos(j-q) ,  essential all radial component at large r and all 
tangential component  small r.  𝑚" is the length of a meter stick with no gravity . The stick is very 
short considering the scale of things, that is, the stick is local. Let’s calculate the length of this 
meter stick with distorted dimensions.  The length contraction is only in the radial direction, in 
the amount a/r where, as before, a=MG/𝑐'.  Therefore: 
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m = 𝑚#×√{𝑠𝑖𝑛$(j-q)×(1 − 𝑎/𝑟)$ +	𝑐𝑜𝑠$(j-q)} 
where m is the length of the meter stick in the distorted frame.  This all reduces, in first order, to 
m = 𝑚"×(1-a/r×	𝑠𝑖𝑛'(j-q)).  We now integrate along L’ to get the average length of a meter along 
that path under the influence of gravity.  The integral is similar to what we have already done for 
wavelength except for the		𝑠𝑖𝑛'(j-q).   

𝑚()*=𝑚#/𝐿′ ∫ (1 − 𝑎/𝑟×	𝑠𝑖𝑛$(j-q))+/$
# 𝑑𝐿′ 

= 𝑚#/𝐿′ ∫ 𝑑𝐿0 −𝑚#/𝐿′ ∫ (𝑎		𝑠𝑖𝑛$p/$
# (j-q)10

# )dj/cos(j-q) 
 
The first term is 𝐿′ and the second term is, from the integral tables, 
 a[ sin(j-q) - ln(tan(j/2-q/2 +p/4)]	+/$#  = a[(1+ q) - ln(2/q)- ln 1].  
So 𝑚()* = 𝑚#[1 – a/L’× ( -(1+ q) + ln(2/q))].   
 
#meters along L’ = L’/𝑚()* = L’/𝑚#[1 – a/L’× ( -(1+ q) + ln(2/q))] 
We minimize the number of meters in the grid distorted by gravity, by taking the derivative of # 
with respect to q and setting it equal to zero (it is probably easier to maximize 1/# and so we 
will do that). 
 
d/dq(𝑚()*/𝐿′) = 𝑚#𝑑/𝑑q[1 – a/L’× ( -(1+ q) + ln(2/q))]/L’ = 0 
 
as before, with dL’/d𝜃	= L𝜃 and L𝜃 = 𝐿,q =	𝑟"	,  we get, after some algebra 
 

																				𝑟!-a( 1/q - 1)=0 
 
  Since 1/q is about 10-, the 1 is second order, so: q = 𝑎/𝑟# 
 
 total deflection due to length contraction = 2𝜃 =  2 MG/ 𝑟!𝑐#  =  𝑟$/𝑟!	 
 
A few observations.  The effects of time dilation and length contraction are long range effects, 
they drop off only as 1/r.  We noticed in the integrals that the major contribution is from the 
high-end of the integrals whereas at the low-end, with small values of r, there is essentially no 
contribution.  The		𝑠𝑖𝑛'(j-q)  term, which kills off contributions only at the smaller values of r, 
made little or no difference.(see below, depends on your point of view)   
The above calculation becomes very simple if, instead of contracting the radial dimensions, we 
expand the circumferential dimensions and leave the radial dimensions unchanged. It’s the same 
warped space. The expression for the length of a meter stick  becomes: 
 
m = 𝑚#×√{𝑠𝑖𝑛$(j-q) +	𝑐𝑜𝑠$(j-q)(1 + 𝑎/𝑟)$}  = 𝑚#(1 + 	𝑎/𝑟×𝑐𝑜𝑠$(j-q)) 
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with dL’= r/cos(j-q)dj  and L’ ≅ 𝑟2/q we have   
 
𝑚()* = 𝑚#/𝐿′ ∫ 𝑑𝐿0 +𝑚#𝑎/𝐿′ ∫ (	𝑐𝑜𝑠$p/$

# (j-q)10
# )dj/cos(j-q) 

 
            =		𝑚#(1 + aq/𝑟2)  (to first order, the integral is ≅ 1). 
  Minimizing L’/𝑚()* (the number of meters on the path) quickly gives 
              q = 𝑎/𝑟2	= MG/𝑟#𝑐$ as before 
The ease of calculating depends on your view. So why was one calculation much easier than the 
other?  In the first calculation the effect of length contraction only affected light in the radial 
direction and that  is at very large radii, giving a small affect integrated over large distances, a 
nasty integral. In the second calculation, the effect of tangential “length expansion” was only in 
the tangential direction which affects light only at small radii.  A larger affect integrated over a 
smaller distance, giving a reasonable integral.  You can ignore some of the comments in “a few 
observations 
 
 
The total deflection due to both effects is 4 MG/𝑟!𝑐#, 1.75 arcseconds 
 
  This whole light bending thing could’ve been done in one fell swoop by just calculating the path 
of minimum number of wavelengths and taking into account both the effects of length 
contraction and time dilation on the wavelength of the light.   The integral would’ve been	 
 

			𝜆()*=	𝜆# /L′ ∫ (1 − 𝑎/𝑟-+/$
# 	𝑎/𝑟×𝑠𝑖𝑛$(j-q))𝑑𝐿′  

   where a is MG/𝑐' and dL’ = r/cos(𝜑 – 𝜃)d𝜑. 

				𝜆()* =	𝜆#	(1- a/𝐿′ ∫ 	+/$
# (1 + 	𝑠𝑖𝑛$(j-q))/cos(𝜑 – 𝜃)× dj) 

     =	𝜆#	(1-a/𝐿′ ∫ 	+/$
# (2- 𝑐𝑜𝑠$(j-q))/cos(𝜑 − 𝜃)	dj) 

 
  The first term in the integral gives a factor of two times what we got for time dilation and the 
second factor is equal to 1 + q, but  gives only a second order contribution when we calculate the 
path of minimum number of wavelengths.  
 This is analogous to classical optics. In our flat world, the path of minimum number of 
wavelengths in free space turns out to be a straight line i.e. the shortest distance.   But if there is 
something else going on, like a variable index of refraction (or time dilation), then the path is not 
a straight line. Time dilation and length contraction, each cause an increase in the wavelength of 
light (but in somewhat different ways) with the distance from the sun, causing the path to bend. 
In classic optics, there is something called Fermat’s Principal that says light goes on the path of 
least time. In the warped system, with time dilation, the path of minimum number of 
wavelengths prefers paths away from the sun where the wavelengths are longer (fewer 
wavelengths), whereas in Fermat’s case the light prefers paths near the sun where the seconds 
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are longer (fewer seconds).   The answer would have the same magnitude but the opposite sign, 
so light would bend in the opposite direction for the path of minimum time from what we get for 
the path of minimum number of wavelengths. In Einstein’s first calculation of the bending of 
light, neither time nor light velocity varied in space and therefore the path of minimum time 
would’ve just been a straight path for the beam of light, no bending. Why is this, because 
Fermat’s principal works in classical optics? In classical optics, with a variable Index of refraction, 
the velocity of light changes but the frequency stays the same. If the frequency stays the same, 
then the wavelength varies and regions of higher velocity are regions of longer wavelength.  Paths 
of least time (high velocity) are equal to paths of least number of wavelengths (longer 
wavelengths).  In our warped system, with time dilation, the speed of light is constant and so in 
areas of slower time (higher frequency) the wavelengths are shorter and therefore paths of least 
time are not paths of the least number of wavelengths. Fermat’s principal works in classical optics 
because it is the same as the path of minimum number of wavelengths, but without the 
important “slop” in the path. In the next example, where we will calculate the light bending in an 
unwarped frame, we will see that Fermat’s principal works. 
 
 
 
The unwarped system 
We now want to calculate the bending of light as seen by a distant observer and calculated in his 
flat, unwarped, reference frame. The speed of light is a constant, c, locally in the gravity frame, 
but because of  length contraction and time dilation, the speed will not be the same as calculated 
in the flat reference frame.  We must translate the constant speed of light in the gravity frame to 
the speed of light in the flat reference frame. It will depend on both the position and direction of 
the light.  
We need to calculate dr/dt and dC/dt (circumference ) in the flat frame so let’s think about 
differentials. Because the radius is shorter in the gravity frame, for a given length dr in the flat 
frame there is a larger number of meters in the gravity frame, ie, 𝑑𝑟+ = dr(1+a/r). Because time is 
slower in the gravity frame, for a given time increment in the flat frame, dt, there are fewer 
seconds in the gravity frame so, 𝑑𝑡+=dt(1-a/r).  The circumference is the same in both frames. 
That said, we get dr/dt = c(1-a/r)/(1+a/r) = c(1-2a/r) and dC/dt = c/(1+a/r) = c(1-a/r). Time is the 
same everywhere in the flat frame, so this is analogous to the classical case where the frequency 
of the light is constant and the wavelength varies directly with the speed. In fact we could write 
the following,  𝜆.  = 𝜆"(1-2a/r)  and 𝜆/  = 𝜆"(1-a/r)  where 𝜆" is the wavelength with no gravity 
present. If one wants a complete analogy with the classical case, then one has an index of 
refraction which is somewhat strange in that it depends both on position and direction of the 
light. 
As before, we want to calculate the average wavelength along our path, so we calculate the 
number of wavelengths along the path and then minimize it in order to get the angle of bending. 
The wavelength in the integral will be  
 l= 𝜆#×√{𝑠𝑖𝑛$(j-q)(1 − 2𝑎/𝑟)$ +	𝑐𝑜𝑠$(j-q)(1 − 𝑎/𝑟)$}   
This reduces to;  1 - a/r -	a/r×𝑠𝑖𝑛$(j-q) (remember (1 + 𝑥)3 = 1 + nx ),  which is 
exactly the same as we had above when we combined time dilation and length 
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contraction in the warped (gravity) frame, and so the light  bending will be as 
before; 4 MG/𝑟#𝑐$. For the distant observer, it makes no difference whether he 
calculates the bending of light as it goes through the warped gravity frame where 
the velocity of light is constant, or whether he calculates the bending in his flat 
frame where  the velocity of light varies 
 
 
The Shapiro time delay 
In 1964, Irwin Shapiro proposed a test of general relativity which consisted of reflecting a radar 
beam off of either Venus or Mars, and back to earth, while the planet was moving behind the sun 
so that one could observe the change in transit time as the radar beams came closer and closer 
to the surface of the sun and, therefore, into a stronger and stronger gravitational field. Shapiro 
calculated and measured a time delay of about 200 µs as the beams moved from far away to near 
the surface of the sun.  
From what little I have read, there seem to be a fair number of people who think that the time 
delay is caused by the fact that the radar beam is bent around the sun, and the longer path causes 
a time delay.  Let’s put some numbers into this idea.  Due to bending, the path will be multiplied 
by 1/cosine(q) = 1 + q'/2 where q is half the angle of the bending calculated in the previous 
section, which is 4 × 10%& radians.  This gives a fractional path increase of 16 x 10%0'. If we 
consider radar bouncing off of Venus, the path in one direction is just the radius of the orbit of 
Venus plus the radius of the orbit of earth, which is equal to about 2.5×1000m.  Multiplying by 
two and dividing by the speed of light gives a transit time out and back of about 2000 sec. If we 
multiply by the fractional increase in the path length, we get a time delay of about 30 
nanoseconds, nowhere near Shapiro’s 200 microseconds.  It’s fair to say, this idea for the time 
delay does not work. 
  
  
 



 14 

                              
 
Let’s calculate the time delay similar to our last example of bending in the flat frame. The times 
and distances of the measurement of course are in the flat frame and so the speed of light will 
not be a constant in this frame. Consider the figure above. We have a beam of radar which goes 
from earth to Venus and back again passing at a distance 𝑟" from the center of the sun. We will 
integrate along this path to get the time. We integrate first along a straight line from a level of 
the center of the sun to the planet Venus. In our drawing that would be an integration from theta 
equals zero up to an angle which is almost 90°.  We want to integrate dt = dl/velocity.  Now the 
velocity of light along the path at the position theta is; 
V = c (√(1-2a/r)$𝑠𝑖𝑛$q +(1-a/r)$𝑐𝑜𝑠$q)  =  c( 1 -a/r - a/r𝑠𝑖𝑛$q)  to first order 
                                                                                                        
We want to calculate the integral  T = ∫ dl/v = 1/c∫ dl( 1 +a/r + a/r𝑠𝑖𝑛$q) 
dl = dr/sinq , r = 𝑟#/cosq, and dr =𝑟#sinq/𝑐𝑜𝑠$q dq  
The integral becomes 
    T =𝑟#/c∫ (1/𝑐𝑜𝑠$q  + a/𝑟#cosq + a×𝑠𝑖𝑛$q	/𝑟#cosq)dq 

l 
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A trip to the integral tables gives; 
T =𝑟#/c× tanq  +  2a/c×ln(tanq + secq)  - a/c×sinq 
evaluated from 0 to arctan √(𝑟*' - 𝑟"')/	𝑟" 
Now 𝑟"' ≪ 𝑟*',	𝑟1', so the distance along the straight path is essentially 𝑟* + 𝑟1 
Most of the contribution comes from the upper limit where tan = sin/cos @ 1/cos 
=	𝑟)/𝑟#  so: 
T = 𝑟)/c + 2a/c×ln(2	𝑟)/𝑟#) -a/c      for the Venus leg,  
     
 T = 𝑟4/c + 2a/c×ln(2𝑟4/𝑟#) -a/c      for the earth leg; 
 
Adding the two together and multiplying by 2 for the return trip 
 
     Transit Time = 2(𝑟% + 𝑟&)/c + 4a/c×(ln (4𝑟&×𝑟%/𝑟!#) – 1) 
 
The first term is just the Newtonian value of distance/c and the second term is the Shapiro time 
delay, which is about 200 microseconds for 𝑟" equal to the radius of the sun . Since one does not 
know the transit time well enough, only the ln (𝑟1×𝑟*/𝑟"') term is important because it gives the 
variation of the transit time with the distance of closest approach, 𝑟", which is what the 
measurement does. 
 
 
Precession of the Perihelion of Mercury  
First, a little history. In the mid-1800’s it was calculated that the precession of the orbit of 
mercury should be 532 arc seconds/century due to the gravitational force from the other planets, 
but unfortunately the measured value was 575 arc seconds/century.  This leaves about 43 arc 
seconds to account for. Can relativity be the answer? Let’s see. Now the angle of precession per 
revolution of the planet in its orbit is a dimensionless number. As we have already mentioned, 
the answer will be “something” times MG/𝑟𝑐' where r is now the radius of the orbit. We need 
to find the “something”. As usual the radius of the orbit will be length contracted and will be 
equal to 𝑟+	=r (1-MG/r𝑐'	) . 
 
Let’s consider the parameters involved in the orbital motion. When relevant, the parameters will 
be per unit mass of the planet. We want to consider their deviation from their non-relativistic 
values, as seen by our distant observer. The parameters will be something like A = 𝐴"×(1 + 
nMG/𝑟𝑐') =  𝐴"×(1 +n2𝑟$/r) where n is a positive or negative integer. Remember that multiplying 
is the same as adding. We will list the n values for each parameter.  For instance, r will be -1 
because of length contraction in the radial direction. Also, 1/r is +1 and 𝑟' is -2. The orbital 
velocity V is ≪ c.   
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Parameter Designation  n  Comment   
Radius   r  -1  length contraction 
Time   t  +1  time dilation 
Mass of the sun M  +1  freefall analysis 
Velocity in orbit V  +1     time dilation, no tangential length contraction 
Angular momentum   rV, h   0     a constant of motion that stays constant 
Centripetal accel 𝑉'/r, ℎ'/𝑟2 +3     
Gravitational force MG/𝑟'  +3     
Orbit circumference    C                         0             no tangential length contraction 
 
If one doesn’t like the increase in M, then one can argue that the centripetal acceleration 
increases by three units and, therefore, there must be a gravitational force caused by 
“something” which causes this acceleration. The increase in M, though, is part of the freefall 
analysis, so, like it or not, we keep it. The angular momentum contains the following, length 
contraction in the radial direction, no length contraction in the tangential direction, and time 
dilation in all directions.  
 
Orbital Mechanics and Harmonic Oscillators 
 Let’s start simple and work our way up. Consider the mass on a spring shown in the following 
diagram.   We will do things per unit mass, that is, m = 1. 
 

 
 
 
For small movements Dx from the equilibrium position, the restoring force F is -k×Dx where k is 
the spring constant.   The equation of motion is: 
      𝑑$(Dx) /  + kDx = 0   and the solution is Dx = a×sin(wt)  
  where w =   and a is an amplitude 
 
If k is a function of x, the analysis is still OK for small Dx. Our springs are nonlinear and so we will 
consider only small deviations from the equilibrium(null) position with the derivative dF/dx being 
evaluated at the equilibrium position (zero net force). 
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Classical Calculation 
Consider a planet orbiting the sun.   We go into the orbiting frame of the planet (you don’t have 
to, but it is easier to visualize) and add a centrifugal force, ℎ'/𝑟2	outward from the sun, to replace 
the centripetal acceleration. We now have two forces on the planet, a centrifugal force and a 
gravitational force as shown below. 
 
 
 
 
A few things to notice.   As r increases, we notice that the centrifugal force decreases faster than 
the gravitational force and therefore there is a restoring force to decrease r.   If the gravitational 
force were a 1/  force, then there would be no restoring force and the universe would consist 
of things floating around randomly. 1/  is even worse. Luckily for us, the force is 1/ . 
 
The total force is   = /  -MG/  
For oscillations in the radial direction: 
 -k = d /dr = -3 /  + 2MG/   = - ℎ$/   (at the equilibrium(null) position) 
Therefore = k = h/   but, because h = , this is the same as the frequency of the planet 
orbiting the sun, ( r for radial, o for orbital). This means that the point of maximum radius 
(perihelion) occurs at the same point every revolution of the planet around the sun. This slightly 
elliptical orbit is, therefore, stationary and has no precession. 
 
           Classically:  radial frequency = orbital frequency 
 
“General Relativity” Calculation 
 
We start with the classical expression for the spring constant along the radial direction. 
      k = -d /dr = 3 /  - 2MG/    for the no gravity(inertial) frame. 
We then write this in terms of the gravity frame parameters using r =  𝑟+(1+a/r) . 
a = MG/𝑐' and 𝑟+  is the orbit radius in the gravity frame as measured in the inertial frame. 
Remembering that (1 + x)( = 1 + nx for small x,  we get , first by transforming r (the subscript g 
denotes the gravity frame) 
 
 𝑘' = 3ℎ#/(r()(1+4a/r)) - 2MG/(r(*(1+3a/r)) 
 
𝑘' = w+'# = 3ℎ#/r()- 2MG/r(* +(-12ℎ#/r() + 6 MG/r(*)×a/r   
 
We must now evaluate this at the null point in the gravity frame. 

 
 

MG/
Type	
equa
tion	
here. 
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In the no gravity frame the null point is where  /  = MG/ .  We naïvely showed earlier that 
the changes in the gravitational force and the centripetal acceleration were equal when we 
moved to the gravity frame, as long as we included the increase in the mass of the sun, M. (I wish 
I had a better explanation).  If we do this, then  the null point is where,  /r32 = 𝑀+G/r3', so 
 
In the term with MG/𝑐',  it makes no difference, to first order, which mass and which radius you 
use, gravity or no gravity, since it is such a small term to begin with. 
We can write the change in 𝑘+ due to a shift in r of MG/𝑐', with dr = d𝑟+, as; 

𝑘' = k + dk/d𝑟+  ×Dr = 3ℎ#/r()- 2MG/r(*+ d/d𝑟+ (3ℎ#/r()- 2MG/r(*)× MG/𝑐# 
 
𝑘' = 3ℎ#/r()- 2MG/r(* + ( - 12ℎ#/r() + 6 MG/r(*)× MG/r𝑐# as before 
 
w+'# = ℎ#/r() (1- 6a/r ) = w,'# (1 – 6MG/𝑐#r) 
Taking the square root, 
w+' = w,'(1 – 3MG/𝑐#r) 
 
Implied in all of this is that time dilation affects the two frequencies  the same and 
therefore  does not affect the ratio. How did all this happen?  Well, as seen from 
the inertial frame, the shift in r decreased k, and therefore the radial frequency. 
There was no corresponding change in the circumference and therefore the orbital 
frequency stayed the same. Gravity has caused a difference in the two frequencies, 
which we can probably blame on radial length contraction. 
 
This answer is less than the frequency of orbital rotations, w2*, and, therefore the 
orbit has a precession, and is not stationary. The point of maximum radius 
(perihelion) occurs later each revolution of the planet around the sun (the orbit 
advances each revolution by the time the maximum radius occurs). The difference 
per revolution, in radians per second is:  
w+' - w,'= -w,'× 3MG/𝑐$r.   If we multiply by the time of one orbit, 2p/w,', we 
get the number of radians the radial oscillation lags the orbital oscillation per 
revolution. 
 

   Dq/revolution = 6p MG/  
 
This is the answer.  6p is the “something” we were looking for. 
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For light bending, 4 MG/  was equal to 1.75 arcseconds , so we replace 4 by 6p 
and the radius of the sun  (7x  km) with the radius of mercury’s orbit.  It is a 
little sloppy, but we will just use the mean radius of 57x  km.  The answer is 0.102 
arc seconds/ revolution.  The period of mercury’s orbit is 88 of our days, so we 
multiply by 365/88×100 to get 42 arc seconds/century compared to the 43 that we 
needed. Treating the amplitude of oscillation of Mercury’s orbit radius as being 
small is pushing it a little bit, so a more careful analysis would give a better answer. 
This whole analysis is for any planet going around a large body like the sun. If you 
do the calculation for Earth you get about 3.8 arc seconds per century . 
 
 
 
 
Comparison with the Swartzchild Metric 
It is interesting that we were able to calculate the bending of light by gravity, the Shapiro Time 
Delay and the shift of the Precession of the Perihelion of Mercury 
without reference to something called the Swartzchild metric, which is the exact solution to 
Einstein’s field equations for a spherical symmetric radial gravitational field. There must be some 
relationship between our approach and the Swartzchild metric. Here is what I found.  
In classical mechanics the distance between two points, ds is such that 𝑑𝑠' = 𝑑𝑥'+𝑑𝑦'+𝑑𝑧' and 
is invariant to the choice of coordinate system.  In special relativity, space and time got mixed  
together and the invariant now is 𝑑𝑠' = 𝑑𝑥'+𝑑𝑦'+𝑑𝑧'- (𝑐𝑑𝑡)' where c is the speed of light and 
dt is the time difference between the points, and again, ds is invariant to the choice of  coordinate 
system. In spherical coordinates this is 𝑑𝑠'= 𝑑𝑟'+ 𝑟'(𝑑𝜃'+ 𝑠𝑖𝑛𝜃'𝑑𝜑') -	(𝑐𝑑𝑡)'. In this case the 
time difference between two points depends on the coordinate system and their spacial 
positions, but we already found that to be true  This metric is called, I believe, the Minkowski 
metric for flat space-time. 
Now gravity further mixes up space and time and the metric now is the Swartzchild metric. The 
invariant is, for a spherically symmetric gravitational field: 
 𝑑𝑠'= 𝑑𝑟'/(1-𝑟$/r) + 𝑟'(𝑑𝜃'+ 𝑠𝑖𝑛𝜃'𝑑𝜑') -	(𝑐𝑑𝑡)'×(1-𝑟$/r) where 𝑟$ is the Swartzchild radius, 
2MG/𝑐'. It is fairly obvious that the 1-𝑟$/r in the first term is related to length contraction and 
the 1-𝑟$/r in the last term is related to time dilation. 
 
Results from our freefall analysis were : 
1. The radial dimension was contracted, making the distance between two points measured on 

that axis to increase such that dr was altered to dr(1+𝑟$/2r). 
2. The dimensions in the tangential direction were not changed. 
3. Because of time dilation, the time difference between two points decreases such that dt is 

altered to dt( 1-𝑟$/2r) 
If we plug these results into the Minkowski metric to account for gravity, we get 
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							𝑑𝑠'= 𝑑𝑟'(1+𝑟$/2r)'+ 𝑟'(𝑑𝜃'+ 𝑠𝑖𝑛𝜃'𝑑𝜑') -	(𝑐𝑑𝑡)'(1 − 𝑟$/2r)' The second and third terms 
are not altered because they are tangential.  Using = 1 + nx for x≪ 1 and expanding 
the squares, this can be written as: 
      𝑑𝑠$= 𝑑𝑟$/(1-𝑟'/r) + 𝑟$(𝑑𝜃$+𝑠𝑖𝑛𝜃$𝑑𝜑$) -	(𝑐𝑑𝑡)$×(1-𝑟'/r) which is the Swartzchild 
metric. 
So, our analysis agrees with the exact solution for 𝑟$/r≪ 1, which is the case for the two examples 
we have calculated and which is the assumption we made at the beginning.  
 
 
Black Holes and the Photon Sphere 
So far, our simple approach to general relativity has done well as far as calculating goes. We have 
taken examples only where the radius from the large gravitational object is much larger than the 
Swartzschild radius. We should probably quit while we’re ahead but let’s forge into black holes.    
We revisit our free fall example, but this time falling towards a very small but very massive object. 
We want to calculate at what radius our free fall velocity, with respect to this object, is equal to 
the speed of light.  The first calculation will be done assuming that the massive object accelerating 
towards us doesn’t change its mass as it’s velocity towards us increases. 
 
dV  = acc×dt = acc×dt/dr×dr = MG/𝑟$×1/V×dr      So  VdV = MG/𝑟$×dr  acc is acceleration 
  
 integrating with V equals zero at infinity, we get, for the radius where V equals c, 
 
r = 2MG/𝑐', which is the Swartzschild radius 𝑟$.   
This radius is twice as big as the radius you would get for a black hole using our approximation of 
low velocity and so don’t be disturbed by the size of this radius, besides, with our approximation, 
we are not supposed to be working down at these small radi. 
 For our sun, this radius is about 3 kilometers compared to its actual radius of 0.7 million km.   We 
will never get to the Schwartzschild radius by free-falling toward the sun.  For it’s mass, it is not 
small enough. An object smaller than this radius is called a Swartzschild black hole. 
In the gravity frame things are pretty grim. The clocks have slowed to a halt and the radial 
dimensions have now decreased to zero due to length contraction. This radius is called the event 
horizon. Anything that occurs inside of this event horizon will not make it out. Massive particles 
would have to be traveling at the velocity of light just to make it out. Photons would have to have 
infinite frequency and, even then, they would be red shifted down to zero frequency if they 
escaped.  
  
 
The Photon Sphere 
 In classical optics, there is an interesting example I will call the light merry-go-round.   Let’s say 
we have a transparent disk which has an index of refraction which decreases with increasing 
radius.  For instance, let n = 𝑛"(1 -r/𝑟") where n is the index of refraction.  Because of this index, 
the velocity and wavelength of light will increase with increasing radius. Here comes the path of 
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minimum number of wavelengths again.  If the index were constant, then for a circular path of 
light, an increase in the circumference of the path would always cause an increase in the number 
of wavelengths and so there would be no path of minimum number of wavelengths.   But in our 
case the index decreases as the radius increases which means that the wavelength increases. 
There may be a radius at which the percent increase or decrease in circumference of the path 
and the increase or decrease in the wavelength, as the radius increases or decreases, are equal 
and, therefore, the number of wavelengths does not change.  This would be the path of minimum 
number of wavelengths. The light would orbit around in a circle at this radius. Let’s see if there is 
such a radius. The number of wavelengths is just the circumference divided by the wavelength.  
l= l"/n= l"/𝑛"(1 -r/𝑟") 
         # wavelengths = 2pr/l = 2pr×(1 -r/𝑟")	𝑛"/l". 
 Taking the derivative and setting it equal to zero gives   r = 𝑟#/2.   One could make	𝑛" equal to 
3 and therefore the orbit would be where the index is 1.5.   Such a thing would be interesting on 
the scale of several microns such as a section of a graded-index multi-mode optical fiber. This 
effect would cause a spiral mode for light going down the length of a graded-index multi-mode 
fiber.  The index does not need to vary linearly with r.  For any index n(r), all that is needed is that 
there be some radius where dn/n = -dr/r. 
In the gravitational field around a black hole, we have a similar situation. Time dilation causes the 
wavelength of light to increase the further away you get from the black hole, giving  
l=(1-a/r)𝜆"	where	𝜆"	is	the	wavelength	at	infinity. The wavelength, in a circular orbit, is not 
affected by length contraction. The situation is a little more complicated than the previous 
example, because the circumference is not equal to 2p times the contracted radius.  The 
circumference is equal to two pi times the uncontracted radius, r/(1-a/r), because the 
circumference is not affected by length contraction, as is the radius. We then have that the 
number of wavelengths on a path of radius r (contracted) is: 
# wavelengths = 2pr/(1-a/r)l = 2pr/(1 − 𝑎/𝑟)$𝜆# where a = MG/𝑐$ 
 Here we must be careful and not use 1/(1-a/r) @ 1+a/r since a/r is not ≪ 1.          
 The constants drop out when we set the derivative equal to zero. 
 d#/dr = d/dr(r/(1 − 𝑎/𝑟)$ = 0:   This gives 𝑟$	- 4ar + 3𝑎$ = 0.  Solving for r: 
 
r = 3a =3/2×𝑟$.   This is the radius of what is called the photon sphere, 
 
 a radius where light “can” orbit around the black hole. The continuous orbiting is probably not 
stable and the light would probably leave this orbit. But, this radius is outside the bounds of 
where our approximations are reasonable.  In “reality”, we should not be calculating anything 
down at this radius with our simple approach.  None the less, r = 3/2×𝑟$ is the accepted value for 
the radius of the photon sphere. Go figure. 
 
 
The twin paradox 
A famous paradox of special relativity is the twin paradox. Here we have two twins, one which 
stays home and the other who travels in a spaceship and then turns around and returns to earth.  
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Both twins see the other twin’s clock as running slow and so which one is younger when the 
second twin returns?   The rule is to analyze the situation from the point of view of the inertial 
frame. This is the frame of the twin that stays home, so the answer is that the twin who took the 
ride in the spaceship comes back younger. How does he see this? The explanation is in the 
turnaround. Here the twin in the spaceship experiences an acceleration which is equal to a 
gravitational field. This field will be in a direction from earth to the spaceship.   During turnaround 
then, the clock on earth will be higher in the gravitational field and therefore the twin in the 
spaceship will see earth’s clock running faster than his.   This speed up in earth’s clock is enough 
to more than compensate for the fact that the earth clock was running slow before and after 
turnaround and when the spaceship twin gets back to earth, he will find that he is younger than 
his earth twin.  Let’s calculate. Say that the travelling twin starts his turnaround at a distance L 
from earth. If he has been traveling with a velocity V, then the turnaround acceleration, in a time 
T2, which we take to be much less than the travel time, will be  g = 2V/T2. If you do the freefall 
exercise in this constant gravitational field, you will find the difference in the rate between two 
clocks that are spaced a distance X apart, assuming V≪ 𝑐:  % difference in clock rates = g-1 
= gX/𝑐$. You can throw in length contraction but it’s a second-order effect.  During the 
turnaround time T2, the earth’s clock, will gain gX/𝑐'×T2 = 2LV/𝑐'	seconds on the traveler’s clock. 
But, during the out trip and the back trip, the earth clock lagged behind the traveler’s clock by  
(g-1)×travel time = 1/2𝑉'/𝑐'×2L/V= LV/𝑐', again assuming V≪ 𝑐.  The net effect is that the earth 
clock, according to the traveler, advances LV/𝑐'ahead of his clock during the entire trip and so 
the traveler comes back younger.   That is what we got when we look at the problem from the 
point of view of the earth twin. Paradox resolved. 
 A more realistic twin paradox would be one where the travelling twin accelerates from the earth 
up to a velocity V, turns around, and then decelerates down to zero velocity to land on earth. 
During the acceleration and deceleration near earth, the traveling twin sees the earth clock as 
running slow compared to his clock due to gravity.   During turn around he sees the earth clock 
as running fast.  These effects do not cancel. The effect of the acceleration on the clocks depends 
on the distance between the clocks and therefore the turnaround outweighs the effect of 
acceleration and deceleration near earth. The net effect is that the traveler comes back younger. 
For those who like to calculate, one might try the following exercise. Consider the traveler leaving 
earth with an acceleration a to a velocity V, and immediately decelerating and turning around 
until his velocity is V toward the earth. He then lands on the earth at the zero velocity. One can 
calculate to see whether the traveler and earth twins both agree on who is younger and by how 
much. A simpler exercise is to show that if a constant velocity section is added between the 
acceleration and deceleration sections, that they still agree, although, on a different number. 
Do our orbiting astronauts come back younger? No, they come back older. More on that in the 
next section. 
 Another thing to think about with the twin paradox, is to consider the following. If the stationary 
twin looks at the moving twin’s x axis as it moves by, which is marked off in meters, he notices 
that it is length contracted with respect to his. From his vantage point, out to the position of his 
twin, there are more meter marks on the moving twin’s axis than on his axis. During turn around, 
when the travelling twin slows down to zero velocity, his x-axis becomes the same scale as that 
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of the stationary twin. Where did all those meter marks go that had passed by? Try to figure out 
how this all evolves. The keyword here is “when”. “When” is a tricky word in relativity. 
 
 
 
 
 
 
Clocks and GPS  
One occurrence of relativity in our everyday life is the Global Positioning System (GPS), although 
we probably don’t know it (or care about it). GPS consists of 31 satellites (as of 2017) orbiting the 
earth at a distance of 20,000 km above the earth and with an angular velocity of twice that of the 
earth, so that the satellites pass over every 24 hours.  The idea is to have every point on earth 
have a line of sight to at least 4 satellites at any given time. The satellites give out coded signals 
such that an Earth-based receiver, like your cell phone, can determine the time-of-flight of a radio 
signal from the satellite to your receiver. This time-of-flight gives the distance from the satellite 
to the receiver. There is a sphere around the satellite with this particular distance.  If the receiver 
knows where the satellites are at any given time, then three spheres around three separate 
satellites will intersect at your position on earth (they also intersect at another point which is not 
near the surface of the earth). Radio waves (and light) travel at a speed of about 1 foot/ nano 
second. So, if you want to determine your position to a few feet, this timing needs to be done to 
a few nanoseconds. 
  There are two problems with the timing. The first one is that relativity causes clocks that are 
moving with respect to one another and clocks separated in a gravitational field, to run at 
different rates.  To do the position calculations, the earth-based receiver must be synchronized 
to the satellites’ atomic clocks to a few nanoseconds. The second is that your cell phone does not 
have an atomic clock in it and is not nearly a good enough clock to do the job. 
  Let’s consider the first. We want to calculate the difference in rates between the satellite clock 
and our earth clock. If we calculate, say, in microseconds per day, this is a dimensionless number, 
time divided by time. As before, the answer will be “something” times MG/𝑟𝑐', where M now is 
the mass of the earth and r is the radius of the satellite orbit. Oddly enough, if you guessed 4, like 
the bending of light by gravity, you would be pretty close. OK, just a coincidence. 
We will calculate things in terms of the radius of the satellite orbit,	𝑟$)!, the angular velocity of 
the satellite, w$)!, and the ratio of the satellite’s orbit radius to the earth’s radius,	which we will 
call x.  Remember that the angular velocity of the earth is half that of the satellite. We will 
calculate the difference in the rate of the two clocks as seen by a distant observer. First, the effect 
of velocity as seen on the distant observer’s clock. 
The % difference in rates due to the velocity with respect to the distant observer’s clock is just    
g -1, which, with V≪ 𝑐, is equal to 1/2×𝑉'/𝑐'. For the satellite, V = w$)!×𝑟$)!  and for the earth 
clock, w$)!×𝑟$)!/2x. The difference in rate between the two clocks, therefore, is 
 w$)!' ×𝑟$)!' /2𝑐'(1 - 0.25/𝑥'). The centripetal acceleration of the satellite,	w$)!' 𝑟$)! is equal to the 
gravitational force per unit mass on the satellite, MG/𝑟$)!' . Therefore,w$)!' ×𝑟$)!' = MG/𝑟$)! ,		and 
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the rate difference of the clocks due to their velocity with respect to the distant observer is 
MG/2𝑐$𝑟'(!	(1 - 0.25/𝑥$), with the satellite clock running slow.  
 We are not done because we still need to consider the effect of gravity. We showed before that 
in a central gravitational field, time dilation causes time to be a function of the radius, T = 𝑇"(1-
MG/	𝑟𝑐').  The difference in the rate of time at the earth and the satellite due to gravity is, 
therefore equal to  MG/𝑐$ (1/𝑟4-1/𝑟'(!)	= MG/𝑟'(!𝑐$(𝑟'(!/𝑟4-1) = MG/𝑐$𝑟'(!(x -1) with 
the satellite clock running fast. 
 
Putting this all together: 
The net difference in clock rates is:  MG/𝑐$𝑟'(!(x-1.5+0.12/𝑥$) 
Now x = 26.4/6.4 = 4.1, so the difference in clock rates is 2.6MG/𝑐$𝑟'(!. 
And again, the answer is “something” times the dimensionless parameter MG/𝑐$r. 
Putting in numbers, gravity causes 45 µs per day and relative velocity, 6 µs per day, the net 
difference in rate being 39 µs per day with the satellite clock running fast. If an astronaut were 
on the satellite, he would be aging faster than people on earth. 
 
So, that is the standard approach, with gravity causing an effect which is about 7 ½ times that of 
velocity, that is, “general” relativity contributes 7 ½ times that of “special” relativity. But are they 
really separate effects? It depends on your point of view. Our approach to general relativity is 
that gravity is equal to acceleration, acceleration leads to velocity, velocity leads too length 
contraction and time dilation.  They seem to be all mixed together. 
 To show that, let’s go into a frame rotating with the satellite with the earth at the center.  Here, 
the satellite is at a point with no acceleration and no gravity because gravity at the satellite has 
been canceled by the centrifugal force. An inertial point. We must then subtract the effect of the 
centrifugal force, w$)!' 𝑟$)!, integrated all the way down to zero radius, from our previous 
calculation of the effect of gravity.  We need to integrate all the way down to zero because the 
centrifugal force also affects the earth clock.  If you like the concept of dropping a photon, then 
it is the dropping of a photon in a force field which contains the force of gravity and a centrifugal 
force in the opposite direction. 
The effect of centrifugal force = ∫ 𝐹/1(𝑑𝑟

𝑟𝑠𝑎𝑡
"  = w$)!' ∫ 𝑟𝑑𝑟𝑟𝑠𝑎𝑡

"  = w$)!' ×𝑟$)!' /2. 
As before,	w$)!' ×𝑟$)!' = MG/𝑟$)!, so when we subtract this from our previous gravity calculation we 
get the result:  net “gravity” effect = MG/𝑐$𝑟𝑠𝑎𝑡×(x-1.5) 
There is a small velocity of the earth clock in this frame of w$)!×𝑟$)!/2x.  In this case the effect 
now causes the earth clock to run slow with respect to the satellite clock. The effect on rates is 
MG/𝑐'𝑟$)!×0.12/𝑥' and must be added because the effect is in the same direction as gravity. 
  
The net difference in clock rates in the rotating frame is:  MG/𝑐$𝑟'(!(x-1.5+0.12/𝑥$) 
 
It is the same as before, but now, with x= 4.1,	“general” relativity contributes  99.7% of the entire 
effect. It depends on how you look at it.  One man’s acceleration is another man’s gravity. 
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 This difference in rates is not a big deal because the clocks in the satellites can be corrected with 
electronics.  If they weren’t corrected, the GPS system would lead you off course by about 11 km 
a day, but the correction is to include another satellite. 
 As mentioned earlier, the other problem is that your cell phone doesn’t have a clock good to 
nanoseconds and therefore the distances from all the satellites is probably wrong, but by the 
same amount, the same effect as relativity except probably larger and dependent on the user. 
This, of course, gives the wrong position. If we include information from one more satellite, then 
we can dither the time on the cell phone until the distance from all 4 satellites coincide at some 
point. This is the correct position. One could also do this with uncorrected satellite clocks and 
just solve 4 equations and forget about the satellite clocks being off with respect to the cell 
phone. So, the whole relativity argument is essentially irrelevant, except that there may be small 
differences in the satellite clocks due to relativity that need to be corrected. Oh well, it was an 
excuse to think about relativity but it is a good test of relativity. 
  It looks like special relativity plus freefall is a good approximation to general relativity. It doesn’t 
give us a gravity field plus gravity waves but it gives us a few things to hang our hat on. In writing 
this thing up, I’ve learned quite a bit about relativity and some wrong ideas I had. 
  
Well, that’s about all for relativity. It’s strength, if you want to call it that, is that no fancy 
formalism is required and so any undergraduate engineer or science student, if they wanted, 
could understand it fairly easily. To me, relativity, along with optics, are examples of where simple 
assumptions can get you a long way just by thinking.  
 
  This writeup evolves in time because of more thinking or poor thinking.  The next time you 
look it may have changed a little bit but the answers will stay essentially the same. Please 
excuse the formatting and formulas but I did this thing in Word. 
If you have comments or can suggest changes, please send them to relativity@virgilelings.com.  
Thanks for reading. 
 
 


